45; Aerospike | e-sook

Benchmark:
Aerospike vs. ScyllaDB

A

()

Table of contents

Executive summary
Fairness and limitations
Introduction
Benchmark results
Efficiency (Lower numbers are better)
Throughput (Higher numbers are better)
Read latency (Lower numbers are better)
Write latency (Smaller numbers are better)
Benchmarking methodology
Objectives
Test partner - McKnight Consulting Group
Test tool
Control variables
Dataset description
Systems under test description
Selecting the optimal hardware configuration
Preparation stage
Measurements
Workload description

YCSB parameters

Aerospike

N~ o O o0 o0 W

10
15
20
20
20
20
20
20
21
22
23
23
24
25

Conclusion

Appendix I: Context on a 2023 ScyllaDB
benchmark referencing Aerospike

Appendix II: Read latency (P50, P90)

Appendix llIl: Write latency (P50, P90)

Appendix IV: Determining ScyllaDB’s maximum throughput
Appendix V: About McKnight Consulting Group

25

27
28
30
32
33

Executive summary

This benchmark evaluates the performance and cost efficiency of Aerospike and ScyllaDB when deployed to support 3 TB and 6 TB datasets under a mixed 70% read /
30% write workload. Each system was tested under two access patterns:

= A uniform distribution, designed to minimise cache effectiveness and expose storage-layer performance.
= A hotspot distribution, configured to achieve approximately 50% cache hit rate, in order to assess the impact of caching.

Across all tested scenarios, Aerospike consistently delivered higher sustained throughput, significantly lower latency, and more predictable performance than ScyllaDB.
These results held as the dataset size doubled and under both cache-favorable and cache-unfavorable conditions.

Key results summary
Aerospike ScyllaDB Aerospike ScyllaDB Aerospike ScyllaDB
Dataset Workload throughput throughput P99 read P99 read P99 write P99 write
(ops/s) (ops/s) (ms) (ms) (ms) (ms)

Uniform
(low cache) 196,801

Hotspot
(~50% cache)

632,659

Uniform
973,824

(low cache)

Hotspot

1,205,757 449102
(~50% cache)

Principal findings Predictability and tail latency

- Aerospike exhibited tightly bounded latency, with minimal jitter

Efficiency and cost and low peak-to-trough variation at both P99 and P999.
« Aerospike was provisioned with approximately one-third fewer

infrastructure resources than ScyllaDB in all tests, due primarily to

differences in recommended replication factors.

- ScyllaDB showed substantially greater variability, with long-tail
latencies extending into the tens and, in some cases, hundreds

of milliseconds.
« Despite this, Aerospike consistently outperformed ScyllaDB across

throughput, latency, and stability metrics, resulting in substantially
better performance per unit of provisioned capacity.

- Aerospike’s peak observed latency remained under 7 ms across all
tests, whereas ScyllaDB's exceeded 200 ms in extreme cases.

Effect of caching
Throughput

- Aerospike benefited modestly from caching in terms of throughput,

= Aerospike sustained 2.5x-3x higher throughput

than ScyllaDB across all configurations.

When cluster size doubled from 3 TB to 6 TB, Aerospike
demonstrated near-linear scalability, while ScyllaDB exhibited
sub-linear scaling.

Latency

= Aerospike maintained sub-millisecond P99 read

latency in every test, regardless of cache effectiveness.
ScyllaDB'’s P99 read latency ranged from approximately 15 ms to
over 30 ms, with significantly higher variability.

- Aerospike’s write latency closely mirrored its read latency, indicating
efficient handling of mixed workloads.

= ScyllaDB’s write latency was materially better than its read

latency, suggesting it is comparatively more suited to write-heavy
workloads, though still several milliseconds slower than Aerospike
at P99.

but its latency remained effectively unchanged, demonstrating that

its performance does not depend on cache hit rates.

- ScyllaDB showed measurable improvements with higher cache
hit rates, particularly for read latency; however, even with caching
enabled, it remained an order of magnitude slower than Aerospike
running under cache-unfavorable conditions.

Overall conclusion

Under the tested conditions, Aerospike demonstrated consistently
stronger performance characteristics than ScyllaDB across
throughput, latency, predictability, and scalability, while also requiring
fewer infrastructure resources. These results suggest that Aerospike
is particularly well-suited for latency-sensitive, high-throughput
workloads at multi-terabyte scale, where predictable tail latency and
efficient scaling are critical operational requirements.

As with any benchmark; alternative configurations and workload
profiles may yield different results. Readers are encouraged to
consider these findings alongside their own workload characteristics
and to validate performance under representative conditions.

A

()

Fairness and limitations

Our evaluation was conducted with a strong emphasis on fairness
and methodological rigour, assessing both technologies from multiple
technical angles and focusing exclusively on measurable behaviour
rather than marketing claims.

We designed and executed the tests impartially, though one
challenge was unavoidable: the two systems have fundamentally
different architectures, making it impossible to construct a single test
environment that suits both equally. To address this, we selected the
configuration that best fits each technology, even when this required
differences in the underlying infrastructure. The benchmark explains
this rationale in detail and why we believe it offers the fairest basis

for comparison.

We are confident in the accuracy and objectivity of the results;
however, some margin of error is inevitable. Cloud instances can vary
slightly from run to run, even within the same instance type, due to
hardware wear, physical placement within an availability zone, and
the presence of noisy neighbours on shared infrastructure. These
variations are minor but unavoidable in any cloud-based benchmark.

That said, if new information emerges that materially changes the
interpretation of either system’s behaviour, we remain open to
revisiting and refining our conclusions.

Aerospike

Introduction

This benchmark compares two high-performance, horizontally
scalable NoSQL databases:

= Aerospike is known for delivering near-in-memory performance
with highly predictable latency, even at P999 and beyond, despite
not storing or caching record data in memory.

= ScyllaDB began as a C++ re-implementation of Apache
Cassandra. It has since evolved into a next-generation, high-
throughput, low-latency database that extends well beyond the
original Cassandra ecosystem.

Both technologies are widely used in performance-sensitive and
latency-critical environments, making a direct, data-driven comparison
particularly valuable for organizations seeking to select the most
suitable platform.

We first turn to the results. The subsequent sections describe the
benchmark methodology and detail how the tests can be reproduced.

Benchmark results

Efficiency (Lower numbers are better)

Infrastructure cost
ScyllaDB Aerospike

B ScyllaDB B Aerospike
$160,000
$140,000
(20000 37TB $72,165 $43,293
$100,000
$80,000
$60,000
$40,000

$20,000 6TB $144,330 $86,585

$0

Analysis

ScyllaDB requires roughly 50% more resources than Aerospike to store the same data at the same level of availability. When combined with Aerospike’s
ability to run on lower-cost instance types, this reduces overall infrastructure spend for Aerospike deployments to around 60% of ScyllaDB's.

‘f. Aerospike

Throughput (Higher numbers are better)

Throughput - Uniform (Low cache hit) - 3 TB
= Scylla == Aerospike

1,200,000
1,000,000
800,000
600,000
400,000
200,000 —mbm—m—m—mm—m— — ——————————————————

0
1500 2000 2500 3000

Average (Aerospike 488K ops/s, ScyllaDB, 197K ops/s)

Throughput - Hotspot (50% cache hit) -3 TB

= Scylla == Aerospike

1,200,000
1,000,000
800,000
600,000
400,000
WW_

200,000

0
1500 2000 2500 3000
Average (Aerospike 633K ops/s, ScyllaDB, 262K ops/s)

ﬁ. Aerospike

Throughput - Uniform (Low cache hit) - 6 TB
= Scylla == Aerospike

1,200,000

1,000,000 ————— Y\~

800,000
600,000
400,000 \’\’\’W\’v/_v_,\,_\//_,___
200,000

0
1500 2000 2500 3000

Average (Aerospike 974K ops/s, ScyllaDB, 308K ops/s)

Throughput - Hotspot (50% cache hit) - 6 TB
= Scylla == Aerospike

1200000 S—mmrrpron—ooomoroi—oioooy . —_—m—— m—_-_—

1,000,000
800,000

600,000

| S R R Y R e

400,000
200,000

(0]
1500 2000 2500 3000

Average (Aerospike 1,206K ops/s, ScyllaDB, 449K ops/s)

A

()

3 TBresult

Average
Min
Max

Peak-to-
trough
variability (%)

Degradation

6 TBresult

N

Average
Min
Max

Peak-to-
trough
variability (%)

Degradation

Aerospike

Uniform
(Low cache hit)

Scylla Aerospike
196,801 487,865
185,348 475,275
216,391 496,015
15.77% 4.25%
-0.03% -0.01%
Uniform

Scylla

308,614
243417
427,366

59.60%

-040%

Low cache hit)

Aerospike
973,824
908,397
1,001,909

960%

-0.05%

Hotspot
(50% cache hit)
Scylla Aerospike
261544 632,659
236,040 607,238
346,988 636,059
42.42% 456%
-0.25% 0.00%
Hotspot
(50% cache hit)
Scylla Aerospike
449102 1,205,757
432,038 1,157,328
568,546 1,237,507
3040% 6.65%
-016% -0.01%

Analysis

Performance bounds:
- Aerospike delivers 2.5-3x higher throughput than ScyllaDB.
Predictability:
« Aerospike delivers steady, consistent throughput, showing only
4.25% to 9.6% peak-to-trough variability.
- ScyllaDB’s throughput fluctuates far more, showing 15.77% to
59.6% peak-to-trough variability.
Efficiency:

- Aerospike delivers higher and more consistent performance while
using only two-thirds of the resources allocated to ScyllaDB.

Scalability:
- Aerospike exhibits near-perfect linear scalability, delivering a full 2x

increase in throughput when hardware resources are doubled.

- ScyllaDB does not scale linearly, achieving only about a 1.6x
increase under the same conditions.

Degradation over time:

- Aerospike’s throughput remains essentially flat throughout the test,
with less than a 0.05% difference between the first and last five
minutes, indicating no performance degradation over time.

- ScyllaDB, by contrast, shows throughput degradation over time,
with a 0.4% drop when comparing performance in the first and last
five minutes.

Effect of caching:
- Both systems achieve higher throughput when the workload lends itself to effective caching.
- Aerospike benefits less from caching, yet its performance without cache hits is still roughly 2x better than ScyllaDB’s performance with a 50% cache

hit rate. This clearly demonstrates that Aerospike’s performance does not depend on the effectiveness of a caching layer.

Note: In the 6 TB with Hotspot distribution test, we observed some throughput fluctuation, but this is not typical behaviour for Aerospike and was most likely caused by noisy-neighbour
effects on the cloud infrastructure. We did not re-run this test, as ScyllaDB must have been equally susceptible to such conditions. We do not believe this variance has any material impact on

the overall conclusions.

A Aerospike

A

()

Read latency (Lower numbers are better)
P99 read latency graph

P99 read latency - Uniform (Low cache hit) - 3 TB
= Scylla P99 = Aerospike

1500 2000 2500 3000 3500

Average (Aerospike 0.92 ms, ScyllaDB 17.52 ms)

P99 read latency - Hotspot (50% cache hit)-3 TB
= Scylla P99 = Aerospike

1500 2000 2500 3000 3500

Average (Aerospike 0.98 ms, ScyllaDB 15.30 ms)

Aerospike

P99 read latency - Uniform (Low cache hit) - 6 TB
= Scylla P99 = Aerospike

1500 2000 2500 3000

Average (Aerospike 0.98 ms, ScyllaDB 32.51 ms)

P99 read latency - Hotspot (50% cache hit) - 6 TB
= Scylla P99 = Aerospike

1500 2000 2500 3000

Average (Aerospike 0.99 ms, ScyllaDB 157 ms)

A

()

P999 read latency graph

P999 read latency - Uniform {Low cache hit) -3 TB
= Scyla = Aerosplke

S~ A [

Average (Aerospike 4.42 ms, ScyllaDB 55.76 ms)

P999 read latency - Hotspot (50% cache hit) - 3 TB

= Scylla == Aerospike

1500 2000 2500 3000

Average (Aerospike 5.0 ms, ScyllaDB 4740 ms)

Aerospike

P999 read latency - Uniform (Low cache hit) - 6 TB

= Scylla = Aerospike

1500 2000 2500 3000

Average (Aerospike 549 ms, ScyllaDB 8370 ms)

P999 read latency - Hotspot (50% cache hit) - 6 TB

= Scylla = Aerospike
220
200
180
160
140
120
100
80

)
40
20 /
0 _—

1500 2000 2500 3000

Average (Aerospike 6.0 ms, ScyllaDB 50.94 ms)

A

()

P99 read latency
3TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

6TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

Aerospike

Uniform (Low cache hit)

Scylla
1753
1562
2290
729

0.02%

Aerospike
092
0.90
0.96
0.06

-001%

Uniform (Low cache hit)

Scylla
3251
24.87
7735
52.47
019%

Aerospike
098
095
103
008

-0.03%

Hotspot (50% cache hit)

Scylla Aerospike
15.30 0.98
155 097
3810 102
36.55 0.05
-2.80% -001%

Hotspot (50% cache hit)

Scylla Aerospike
1570 099
6.07 0.89
2361 104
1754 014

-145% -0.03%

A

()

P999 read latency
3TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

6TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

Aerospike

Uniform (Low cache hit)

Scylla
5576
5139
7101
19.62

0.04%

Aerospike
442
377
462
0.85

-0.02%

Uniform (Low cache hit)

Scylla
8370

62.55
205.30
14275
015%

Aerospike
549
3383
578
194

-0.07%

Scylla
4740
22.53
12174
9922
-0.52%

Scylla
50.94
1875
7317
5442
-128%

Hotspot (50% cache hit)

Aerospike
501
446
512
066

-004%

Hotspot (50% cache hit)

Aerospike
6.01
5.61
6.16
0.55

-0.03%

A

()

Analysis

Performance bounds:

Aerospike delivers sub-millisecond latency at P99 in all tests.

ScyllaDB's latency is not tightly bound. The P99 latency fluctuates
between 5 and 80 ms.

Predictability:
- Aerospike exhibits extremely low jitter, with P99 latency showing

only 0.05-0.15 ms peak-to-trough variation across all tests.

- ScyllaDB's P99 latency fluctuates sharply, with peak-to-trough
variation reaching up to 5247 ms.

Efficiency:

- Aerospike delivers 16-33x better P99 read latency while using only
one-third of the resources allocated to ScyllaDB.

Scalability:
= Aerospike’s latency stays effectively unchanged when cluster size

and load double.

- ScyllaDB fails to maintain linear latency scalability when cluster size
and load double.

Degradation over time:

= Aerospike’s latency remains flat throughout the entire test, with
maximum degradation of less than 0.07%.

= ScyllaDB, by contrast, shows P99 latency degradation over time,
with up to a 2.8% drop between the first and last five minutes.

Aerospike

Effect of caching:

= Aerospike’s sub-millisecond latency is independent of cache
hit rate.

- ScyllaDB gains slight improvements from higher cache hit rates, but
the gap between the two technologies remains large.

Latency at extremes:

- Aerospike’s P999 read latency increases only to about 6 ms, with
minimal jitter. Its peak-to-trough variability remains below 194 ms.

- ScyllaDB’'s P999 latency averages 47-84 ms, with peak-to-trough
variability reaching 142.75 ms.

A

()

Write latency (Smaller numbers are better)

P99 write latency

P99 write latency - Uniform (Low cache hit) - 3 TB

= Scylla == Aerospike

o

W

1500 2000 2500 3000 3500

o =4 N W A~ OO O N ® ©

Average (Aerospike 0.9 ms, ScyllaDB 3.5 ms)

P99 write latency - Hotspot (50% cache hit) - 3 TB
= Scylla == Aerospike

W

——————————————————— T —————

o

9
8
7
6
5
4
)
2
1
(0]

1500 2000 2500 3000 3500

Average (Aerospike 1.2 ms, ScyllaDB 5.2 ms)

Aerospike

P99 write latency - Uniform (Low cache hit) -6 TB
= Scylla == Aerospike

=
(=]

o =~ N W A OO N © ©

1500 2000 2500 3000

Average (Aerospike 165 ms, ScyllaDB 6.71 ms)

P99 write latency - Hotspot (50% cache hit) - 6 TB
= Scylla == Aerospike

=
(=]

o = N W A OO N © ©

1500 2000 2500 3000

Average (Aerospike 1.82 ms, ScyllaDB 4.47 ms)

A

()

P999 write latency

P999 write latency - Uniform (Low cache hit) - 3 TB
= Scylla == Aerospike

1500 2000 2500 3000 3500

Average (Aerospike 4.45 ms, ScyllaDB 6.89 ms)

P999 write latency - Hotspot (50% cache hit) - 3 TB
= Scylla == Aerospike

_,\/\/,\/\—V\—\N\/\/\/\/\/\/’

— — ™

1000 1500 2000 2500 3000

Average (Aerospike 5.37 ms, ScyllaDB 8.3 ms)

Aerospike

P999 write latency - Uniform (Low cache hit) -6 TB
= Scylla = Aerospike

1500 2000 2500 3000

Average (Aerospike 7.19 ms, ScyllaDB 12.93 ms)

P999 write latency - Hotspot (50% cache hit) - 6 TB
= Scylla == Aerospike

m&w%

1500 2000 2500 3000

Average (Aerospike 762 ms, ScyllaDB 7.71 ms)

P99 write latency

3TB
Scylla Aerospike Scylla Aerospike
Average (ms) 350 0.90 520 120
Min (ms) 2.80 0.88 3.69 118
Max (ms) 485 094 660 135
Peak-to-trough variability (ms) 205 007 2.91 018
Degradation (%) 019% -0.01% -0.38% -0.01%
6TB
Scylla Aerospike Scylla Aerospike
Average (ms) 6.71 165 447 182
Min (ms) 548 157 373 165
Max (ms) 919 178 644 200
Peak-to-trough variability (ms) 3N 0.21 271 0.35
Degradation (%) 014% -0.05% 0.30% -0.03%

‘f. Aerospike

A

()

P999 write latency
3TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

6TB

Average (ms)

Min (ms)

Max (ms)

Peak-to-trough variability (ms)

Degradation (%)

Aerospike

Uniform (Low cache hit)

Scylla
6.90
613
968
3.65

016%

Aerospike
445
3.76
464
0.89

-0.03%

Uniform (Low cache hit)

Scylla
12.93
1067
18.56
789
013%

Aerospike
719
503
755
2.52

-0.05%

Scylla
8.30
718
1013
2.96

0.01%

Scylla
770
510
10.01
491

-0.05%

Hotspot (50% cache hit)

Aerospike
537
494
550
055

-003%

Hotspot (50% cache hit)

Aerospike
762
741
781
040

-001%

Analysis Degradation over time:

= Aerospike’s latency remains flat throughout the entire test, with
Performance bounds: maximum degradation of less than 0.05%.
Aerospike’s write latency remains roughly 2.4x to 4.3x better than

- ScyllaDB, by contrast, shows P99 latency degradation over time,
ScyllaDB's across all tests.

with up to a 0.38% drop between the first and last five minutes.
Aerospike’s write latency also closely mirrors its read-latency

profile, staying consistently under 2 ms at P99, which highlights its Effect of caching:

ability to handle mixed workloads efficiently. - Caching cannot meaningfully affect write latency, so any variation
ScyllaDB's write performance is significantly better than its read between tests should be attributed to other factors.
performance, suggesting the system is more naturally suited to Latency at extremes:

write-heavy workloads. Even so, it remains several milliseconds
slower than Aerospike at P99. - Aerospike’s write latency at P999 increases more noticeably

than its read latency, which is expected since the write path

Predictability: involves additional network hops, making it more susceptible to

- Aerospike exhibits extremely low jitter, with maximum peak-to- tail-latency variation.
trough variability of only 0.35 ms at P99. « ScyllaDB’s extreme write latency is more contained than its extreme
- ScyllaDB’s write latency, while more stable than its read latency, still read latency.
fluctuates noticeably, with peak-to-trough variability reaching 3.71 - Aerospike remains roughly 50% faster at P999 in all but one test.
ms at P99. - Inthe 6 TB/50% cache-hit test, ScyllaDB shows unusually strong
Efficiency: P999 results matching Aerospike’s performance. We do not

know the reason, but such isolated anomalies are common in

- Aerospike delivers 2.4x to 4.3x better P99 write latency while using benchmarking and do not alter the overall trend

only one-third of the resources allocated to ScyllaDB.
Scalability:

» Both systems show sub-linear scalability for write latency, but
Aerospike is less impacted.

‘f. Aerospike

A

()

Benchmarking methodology

Objectives
The objectives of the test are to measure and compare both
technologies across the following dimensions:

Hardware efficiency

Throughput capacity

Latency behaviours

Scalability

Performance stability and dependability

Test partner - McKnight Consulting Group

These benchmarks were conducted in partnership with McKnight
Consulting Group, whose extensive background in evaluating
database technologies informed the execution of the tests. Aerospike
designed the test methodology and authored this report; McKnight
Consulting Group carried out the benchmark executions.

Test tool

These benchmarks were conducted using the YCSB (Yahoo! Cloud
Serving Benchmark) framework, a widely used open-source tool for
assessing the performance of modern cloud and NoSQL data stores.

Aerospike

Control variables

Control variables are the elements held constant to ensure that
observed differences stem from the variable being tested. In database
benchmarking, workload pressure and hardware are often chosen as
control variables to enable a fair comparison between technologies.
However, this approach can introduce bias: the selected hardware
may suit one system’s architecture better than the other, unintentionally
giving it an advantage.

To remove this source of bias, we used cluster capacity, not hardware
size, as a control variable. Each system was given a cluster sized to
handle the target dataset with sufficient overhead. This lets each
technology operate on hardware aligned with its design, enabling a
fairer and more realistic comparison than forcing both onto a single
hardware configuration.

Dataset description

Data schema

All records were stored as a single dataset within one
keyspace/namespace.

The size of each record was set to be 2,000 bytes. Each record
consists of 10 columns/bins, with each column sized at 200 bytes. The
following configuration was used in YCSB to achieve this layout:

fieldcount 10
fieldlength 200
fieldlengthdistribution constant

http://www.mcknightcg.com
http://www.mcknightcg.com

A

()

Data size

We ran the benchmark twice: once with each technology provisioned
to store 1.5 billion records (3 TB of data), and again with 3 billion
records (6 TB of data), ensuring both datasets could be handled
comfortably in each configuration.

Systems under test description

We used the latest available enterprise releases of both databases at
the time of testing:

Aerospike Enterprise Edition 8.1.01
ScyllaDB Enterprise 2025.2.0

= e

Benchmark 1 2,000B 1,500,000,000 ~3TB
Benchmark 2 2,000B 3000000000 ~6TB
Server configuration

We used the default, out-of-the-box settings for both systems.

While each technology offers tuning options that can optimize
performance for specific workloads, as the workloads used in the test
are fairly generic, the default configuration should provide a fair and
representative baseline for comparison.

For ScyllaDB, we formatted the disks using the XFS file system,
created a single keyspace with SimpleStrategy, and kept the default
compaction settings.

Aerospike

For Aerospike, which can operate directly on raw block devices, we
partitioned and zeroed the disks but did not format them with any
file system.

Client configuration
We used the default client configurations for both technologies.

ScyllaDB was configured with LOCAL_QUORUM for both reads

and writes. Aerospike, by contrast, does not use a quorum model;

its defaultis COMMIT_ALL for writes and ONE for reads, meaning a
write is only acknowledged after it has been committed to all replicas
defined by the replication factor, and the primary replica can then
serve consistent reads.

In practice, this means that for writes, both ScyllaDB and Aerospike
acknowledge the operation only after two nodes have committed it
(RF=3 with LOCAL_QUORUM for ScyllaDB, RF=2 with COMMIT_ALL

for Aerospike). For reads, however, ScyllaDB must contact two

nodes to satisfy LOCAL_QUORUM, whereas Aerospike can read from a
single primary.

Note: It might appear that ScyllaDB could be configured in a similar way (for example,
RF=2 with ALL for writes and ONE for reads), but this would make the cluster unavailable
after any single-node failure, as ALL could no longer be satisfied. Aerospike is
architected differently: with RF=2 and its default policies, it offers consistency broadly

comparable to LOCAL_QUORUM reads and writes in ScyllaDB, while remaining available
for writes in the face of node failures.

A

()

Selecting the optimal
hardware configuration

We allocated the recommended amount of resources required to
store the target dataset sizes of 3 and 6 TB, such that each database
stored approximately 70% of its optimal total capacity, ensuring that
neither technology was pushed into near-capacity behavior, which
could otherwise skew the comparison.

Replication factor

When sizing clusters for a target data capacity, we must determine
the appropriate replication factor (RF) for each technology. This

is not straightforward because Aerospike recommends RF=2,
while ScyllaDB recommends RF=3 for achieving high availability
and consistency.

We evaluated three approaches to align the replication factors:

1. Run Aerospike with RF=3:Aerospike fully supports RF=3, but this

option presents two issues. First, it diminishes one of Aerospike’s key

advantages: achieving the same level of availability and consistency
with only two replicas, rather than the three typically required by
quorum-based databases. Second, Aerospike with RF=3 would
actually provide higher availability than ScyllaDB with RF=3, since
Aerospike can remain available even after a second node failure.

2.Run ScyllaDB with RF=2: This is not viable. ScyllaDB does not
recommend RF=2 for workloads that require high availability and
consistency, and it is rarely used in production for those workloads.

3.Use each system’s recommended RF (Aerospike RF=2, ScyllaDB
RF=3): Because ScyllaDB must maintain three copies of the data

Aerospike

while Aerospike maintains two, and because we chose capacity

as the control variable, ScyllaDB must be allocated 50% more
hardware resources (CPU, RAM, storage, and network) to achieve
the same usable capacity as Aerospike. Having extra resources is an
advantage for ScyllaDB, but it also needs to do slightly more work
than Aerospike on write requests.

Neither of the first two options is ideal, but the third provides the fairest
and most realistic comparison. We therefore used RF=2 for Aerospike
and RF=3 for ScyllaDB.

Cloud provider

All benchmarks, including the database nodes and the YCSB
clients, were run within a single availability zone in the AWS US West
(Oregon) region.

Instance types

As outlined in the Control Variables section, we aimed to avoid
hardware bias by selecting the most appropriate instance types for
each technology. Aerospike recommends ARM-based Graviton
instances on AWS, as they offer comparable performance to Intel-
based instances while being 10-15% cheaper.

At the time of this benchmark, we could not confirm whether ScyllaDB
fully supported ARM-based processors, so we avoided using

them. If ScyllaDB does support them, it could also benefit from the
additional savings.

The instances used in the benchmarks were:

A

()

Aerospike i4g.4xlarge Arm 16 128 GB 3,/50GB $1.235

ScyllaDB idi.4xlarge Intel x86-64 16 128 GB 3,/50 GB $1.373

As shown, these two instance types are nearly identical, differing only in CPU architecture and price. Aerospike performs the same on both, but because
i4g instances are cheaper, they are typically the preferred option.

Sizing Then we executed the benchmarking phase but withheld metric

collection for the first hour to ensure that all caches were fully warmed.
To store 3 and 6 TB data sets, we used the following number of nodes

for each technology:

Measurements

-- Instance type To meet the benchmark objectives, once the one-hour warm-up

eriod had completed, we measured the following metrics for each
Aerospike i4g.4xlarge peri P wi u wing i

3TB run over a 60-minute window, recording values at 60-second intervals.
ScyllaDB i4idxlarge 6 Neither of the first two options is ideal, but the third provides the fairest
. . and most realistic comparison. We therefore used RF=2 for Aerospike
R Aerospike i4g.4xlarge 8 and RF=3 for ScyllaDB.
ScyllaDB i4i4xlarge 12
i Latency
Preparation stage

The client-observed latency was recorded at P50, P90, P99, and P999.
For each test, we began with aload phase to populate the database

with the target number of records. Once the dataset was fully loaded,
we waited for all compaction/defragmentation processes to complete.

Aerospike

A

()

Throughput

When measuring the throughput capacity of a system, it is important
to identify the highest throughput it can sustain without causing

a significant increase in latency. This typically requires knowing in
advance what “good” performance looks like. For Aerospike, we
knew that. For ScyllaDB, however, we needed to run multiple tests to
determine the point at which increasing workload pressure no longer
produced higher throughput and instead caused latency to rise as
operations began to queue.

To identify the throughput level ScyllaDB could sustain, we executed
multiple benchmark runs against the 3 TB cluster, gradually increasing
the load until latency degradation became excessive. You can find the
full details of these runs in Appendix IV.

For the 3 TB test, we used 840 threads for ScyllaDB and 256 threads
for Aerospike. For the 6 TB tests, we doubled the thread counts to
validate each system’s linear scalability claims. However, we do not
treat thread count as a meaningful performance metric. Because
YCSB uses blocking APls, the number of threads required to reach

a given request rate is simply a function of each system’s average
response time.

To illustrate this, consider two systems: one with an average response
time of 1ms and another with 10 ms. With a single thread, the first
system can achieve 1,000 TPS, while the second would need 10
threads to reach the same rate. This difference has nothing to do with
their maximum throughput capacity; the first might cap out at 1,000
TPS, while the second could scale to 10,000 TPS.

Aerospike

Workload description

We selected a 70% read / 30% write workload. Although this results

in more reads than writes, it is by no means considered a read-heavy
workload. We chose this ratio to apply slightly more pressure on reads,
as in most real-time use cases, read latency has a greater impact on
the user’s experience of application performance. At the same time,
we avoided making the workload predominantly read-heavy, as we did
not want the results to be skewed towards a single access pattern.

Write workload

Since we wanted to keep the total number of records constant,

the write portion of the workload was implemented as record
replacements rather than inserts. In both Aerospike and Scylla, a
replace operation follows the same execution path as a standard
write. However, it also introduces data fragmentation, which increases
storage overhead and forces the database to work harder over time.

Because fragmentation naturally occurs in real-world deployments,
we believe incorporating it into the benchmark makes the results more
realistic and relevant, rather than artificially idealized.

Read workload

ScyllaDB promotes its internal cache as a key mechanism for
delivering high performance. As Aerospike does not rely on caching to
deliver the best performance, we tested both technologies with read
workloads with two different distributions:

= Uniform: Requests are evenly distributed across the entire
dataset. Because access probability is uniform, cache hit rates are
expected to be very low.

= Hotspot: A large portion of reads target a small subset of records,
increasing the likelihood of cache hits.

In the hotspot tests, our goal was to achieve a high cache hit rate for
ScyllaDB. However, this proved more challenging than expected.
To achieve even a 50% cache hit rate, we had to direct 55% of read
requests to just 1% of the dataset, a proportion that already seems
unlikely in most practical scenarios.

YCSB parameters

Below are the YCSB parameters used:

readproportion 07 07
updateproportion 0.3 0.3
scanproportion 0 0
insertproportion 0] 0
requestdistribution hotspot uniform
hotspotdatafraction 0.01

hotspotopnfraction 0.55

Aerospike

Conclusion

This benchmark set out to provide a practical, data-driven comparison
of Aerospike and ScyllaDB under realistic operating conditions. Both
systems were evaluated at meaningful scale (3 TB and 6 TB datasets),
under a mixed 70/30 read-write workload, using each platform’s
recommended replication and deployment model, and across access
patterns that both minimise and favour caching.

Across all test scenarios, Aerospike demonstrated materially stronger
performance characteristics than ScyllaDB. It consistently delivered
2.5-3x higher sustained throughput, sub-millisecond P99 read
latency, and low, tightly bounded tail latency, even as dataset size and
workload intensity doubled. These results held regardless of cache
effectiveness, highlighting Aerospike’s ability to deliver predictable
performance directly from persistent storage rather than relying on
cache hitrates.

ScyllaDB, by contrast, showed a much heavier dependence on caching
to improve performance, particularly for read latency. While its write
latency was notably better than its read latency, it remained several
milliseconds slower than Aerospike at P99, and exhibited significantly
higher variability and longer tail latencies. As dataset size increased,
ScyllaDB did not preserve latency or throughput linearly, indicating less
efficient scaling behaviour under the tested conditions.

Importantly, these performance outcomes were achieved by
Aerospike while using approximately one-third fewer infrastructure
resources. Even though ScyllaDB was provisioned with additional
nodes to accommodate its higher replication factor, Aerospike still
outperformed it across throughput, latency, predictability, and stability
over time. This combination of higher performance and lower resource
consumption translates directly into improved cost efficiency and
operational simplicity at scale.

No benchmark can eliminate all sources of scepticism, and alternative configurations or workload profiles may yield different results. However, for
latency-sensitive, high-throughput workloads operating at multi-terabyte scale, particularly those where predictable tail latency and efficient scaling are
critical, the evidence from this study strongly supports Aerospike as the more capable and efficient platform.

Organizations evaluating these technologies are encouraged to validate these findings against their own workloads by testing their applications on
Aerospike at console.aerospike.com.

Aerospike is also available as a self-managed solution: you can download the Community Edition to try a subset of features, or request a free 60-day
Enterprise licence to evaluate the full capabilities of the platform.

A Aerospike

http://console.aerospike.com
https://aerospike.com/download/server/community/
https://aerospike.com/get-started-aerospike-database/

A

()

Appendix |: Context on a
2023 ScyllaDB benchmark
referencing Aerospike

In 2023, ScyllaDB published a benchmark that compared its
performance results against figures drawn from a previously published
Aerospike benchmark. In that publication, ScyllaDB reported achieving
higher throughput than the Aerospike configuration referenced, while
also acknowledging higher P99 write latency relative to Aerospike.

While the numerical comparison itself was accurate with respect to the
cited results, the broader context of the Aerospike configuration used
as areference isimportant for correctly interpreting the comparison.

The Aerospike benchmark results referenced by ScyllaDB were
obtained using Aerospike All-Flash mode, a specific deployment
configuration for storing all records and indices entirely on persistent
storage, with no use of system memory. This configuration is designed
to support extremely large datasets (including petabyte-scale
deployments) at lower cost per terabyte, and prioritizes storage
density and durability over maximum throughput.

As aresult, All-Flash mode delivers lower throughput and higher
latency than Aerospike’s standard deployment model, which uses
memory strategically (not as a cache) to accelerate access while still
maintaining persistence on flash storage.

Because All-Flash mode represents the most storage-constrained
configuration of Aerospike, it is not representative of Aerospike’s
typical performance envelope for latency-sensitive or high-throughput
workloads. Therefore, comparisons against this configuration reflect

Aerospike

a valid but narrow operating point rather than Aerospike’s general
performance characteristics.

Even under these constrained conditions, the referenced Aerospike
benchmark still demonstrated substantially lower tail latency than
ScyllaDB, while delivering a majority of the reported throughput.

Scope of this benchmark

The benchmark presented in this report evaluates both Aerospike
and ScyllaDB using configurations aligned with their recommended
production deployment models for latency-sensitive workloads

at multi-terabyte scale. Aerospike was tested using its standard
architecture, which reflects how it is commonly deployed in
performance-critical environments.

Therefore, the results in this study provide a more representative
comparison of how both systems behave under realistic operating
conditions, across mixed read/write workloads, varying cache
effectiveness, and increasing scale.

https://lp.scylladb.com/scylladb-vs-aerospike-wp-offer
https://aerospike.com/resources/white-papers/running-operational-workloads/

Appendix II: Read latency (P50, P90)

P50 read latency - No cache hit -3 TB P50 read latency- Uniform (Low cache hit) - 6 TB

= Scylla = Aerospike = Scylla = Aerospike

O =_2NWHOO N
O -=-2NWHOON®

1000 1500 2000 2500 3000 1500 2000 2500 3000

Average (Aerospike 048 ms, ScyllaDB 2.4 ms) Average (Aerospike 0.50 ms, ScyllaDB 4.30 ms)

P50 read latency - Hotspot (50% cache hit) - 3 TB P50 read latency - Hotspot (50% cache hit)- 6 TB

= Scylla == Aerospike = Scylla == Aerospike

8
7
6
)
4
3
— 2
1
(0]

M

1500 2000 2500 3000 3500 1500 2000 2500 3000

8
7
6
)
4
3
2
1
(0]

Average (Aerospike 0.35 ms, ScyllaDB 170 ms) Average (Aerospike 0.53 ms, ScyllaDB 2.13 ms)

ﬁ. Aerospike

P90 read latency - Uniform (Low cache hit) - 3 TB P90 read latency - Uniform (Low cache hit) - 6 TB

= Scylla = Aerospike = Scylla = Aerospike

MJ\/M\/\/\—\/M

O =_2NWHEOON®
O =2NWHHOON®

1500 2000 2500 3000 3500 1500 2000 2500 3000

Average (Aerospike 0.64 ms, ScyllaDB 6.12 ms) Average (Aerospike 0.81ms, ScyllaDB 12.90 ms)

P90 read latency - Hotspot (50% cache hit) - 3 TB P90 read latency - Hotspot (50% cache hit) - 6 TB

= Scylla == Aerospike = Scylla == Aerospike

8 8
7 7
6 6
5 5
4 4 4
3 3
2 2
1 1
0 0

1500 2000 2500 3000 3500 1500 2000 2500 3000

Average (Aerospike 0.64 ms, ScyllaDB 6.5 ms) Average (Aerospike 0.83 ms, ScyllaDB 6.73 ms)

ﬁ. Aerospike

Appendix lll: Write latency (P50, P90)

P50 write latency - Uniform (Low cache hit) - 3 TB P50 write latency - Uniform (Low cache hit) -6 TB

= Scylla == Aerospike = Scylla == Aerospike

=
o
=
o

W*—MM/—

o a4 N W A OO O N ® ©
o =2 N W d OO N © ©

1000 1500 2000 2500 3000 1500 2000 2500 3000

Average (Aerospike 0.52 ms, ScyllaDB 1.6 ms) Average (Aerospike 0.70 ms, ScyllaDB 2.00 ms)

P50 write latency - Hotspot (50% cache hit) - 3 TB P50 write latency - Hotspot (50% cache hit) - 6 TB

= Scylla == Aerospike = Scylla == Aerospike

=
o
=
(=]

—

] 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

1500 2000 2500 3000 3500 1500 2000 2500 3000

Average (Aerospike 0.55 ms, ScyllaDB 1.9 ms) Average (Aerospike 0.71ms, ScyllaDB 171 ms)

ﬁ. Aerospike

P90 write latency - Uniform (Low cache hit) - 3 TB P90 write latency - Uniform (Low cache hit) - 6 TB

= Scylla == Aerospike = Scylla == Aerospike

=
o
=
o

\/\/\/M_/_/V\/\/\/\/M

o =2 N W A 0O N 00 ©
o =~ N W A OO O N © ©

1500 2000 2500 3000 3500 1500 2000 2500 3000

Average (Aerospike 0.66 ms, ScyllaDB 2.79 ms) Average (Aerospike 0.94 ms, ScyllaDB 4.09 ms)

P90 write latency - Hotspot (50% cache hit) - 3 TB P90 write latency - Hotspot (50% cache hit) - 6 TB

= Scylla == Aerospike = Scylla == Aerospike

=
=}
=
o

9
8
7
6
)
4
—_——— e —tk—— - 0 —— 3
2
1
(0]

9
8
7
6
5
4
)
2
1
(0]

1500 2000 2500 3000 3500 1500 2000 2500 3000

Average (Aerospike 0.76 ms, ScyllaDB 3.2 ms) Average (Aerospike 0.99 ms, ScyllaDB 2.91 ms)

ﬁ. Aerospike

Appendix IV: Determining ScyllaDB’s maximum throughput

. . Average
Hotspo’F Data Hotspot YCSB Client Three}ds per Total Thread Cache-Hit Average P99 Through-put
Fraction Fraction Count Client Rate % Latency (ms

(Ops/sec)
1 0.01 05 1 560 560 45 8 230K
2 0.01 05 1 616 616 45 85 230K
3 0.01 05 1 840 840 45 15 250K
4 0.01 05 1 560 1680 45 100 285K
5 0.01 0.55 1 840 840 50 15 260 K

As the chart shows, throughput increases as the total number of threads is increased, but on the fourth run, the throughput increase is marginal, and
latency increases exponentially. Therefore, we run the test with configurations of the run 5.

ﬁ. Aerospike

A

()

Appendix V: About McKnight Consulting Group

Information management is all about enabling an organization to have data in the best place to successfully meet company goals. Mature data

practices can integrate an entire organization across all core functions. Proper integration of that data facilitates the flow of information throughout the
organization, which allows for better decisions made faster and with fewer errors. In short, well-done data can yield a better run company flush with real-
time information and with less costs.

However, before those benefits can be realized, a company must go through the business transformation of an implementation and systems integration.
For many who have been involved in those types of projects in the past — data warehousing, master data, big data, analytics - the path toward a
successful implementation and integration can seem never-ending at times and almost unachievable. Not so with McKnight Consulting Group (MCG)
as your integration partner, because MCG has successfully implemented data solutions for our clients for over a decade. We understand the critical
importance of setting clear, realistic expectations up front and ensuring that time-to-value is achieved quickly.

MCG has helped over 100 clients with analytics, big data, master data management, and “all data” strategies and implementations across a variety of
industries and worldwide locations. MCG offers flexible implementation methodologies that will fit the deployment model of your choice. The best
methodologies, the best talent in the industry, and a leadership team committed to client success make MCG the right choice to help lead your project.

MCG, led by industry leader William McKnight, has deep data experience in a variety of industries that will enable your business to incorporate best
practices while implementing leading technology. See www.mcknightcg.com.

Aerospike

http://www.mcknightcg.com

(\

About Aerospike

Aerospike is the real-time database built for infinite scale, speed, and savings. Our customers are ready for what’s next with the lowest
latency and the highest throughput data platform. Cloud and Al-forward, we empower leading organizations like Adobe, Airtel, Criteo,
DBS Bank, Experian, PayPal, Snap, and Sony Interactive Entertainment. Headquartered in Mountain View, California, our offices include
London, Bangalore, and Tel Aviv.

For more information, please visit https://www.aerospike.com.

©2025 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike logo are trademarks
or registered trademarks of Aerospike. All other names and trademarks are for identification
purposes and are the property of their respective owners.

2440 W. El Camino Real, Suite 100, Mountain View, CA 94040 | (408) 462-2376

https://aerospike.com/

