

Ad Tech High-level Reference

Architecture:

Demand Side Platform

 2

Contents

Executive Summary... 3
Demand Side Platform (DSP) .. 3
Real-time Bidding - Campaign execution ... 3

Datastores ... 5

User Profile Store ... 5

Campaign Datastore .. 7

Document vs Relational ... 10

Real-time Campaign Reporting.. 11
Event Collector .. 13

Aggregator/Reducer .. 15

Datastores ... 15

Campaign Datastore .. 15

Event Datastore ... 15

Deployment in Production .. 16

Technology References ... 18

Conclusions .. 19

 3

Executive Summary

This document provides a simplified reference architecture for Demand Side Platform datastores for real-time

bidding and campaign reporting using Aerospike as the datastore technology.

Aerospike’s Hybrid memory architecture™ coupled with its built-in parallelism enables sub-millisecond

latencies and millions of operations per second throughput on large data sets, even on a single server.

Aerospike achieves these impressive figures through its strong consistency mode, which is required in

numerous application use cases. Optimized for hardware at the storage, network and CPU layers, Aerospike

can run on 25% to 35% of the server footprint of other NoSQL databases while maintaining five nines or more

uptime.

Demand Side Platform (DSP)

A DSP provides Campaign Definition, Execution and Reporting on behalf of advertisers and/or their agencies.

Campaign Definition specifies the details of the campaign including duration, target audiences execution

plans, budget, client, etc.

Campaign Execution is usually divided into smaller execution plans, often called line items or placements.

Each execution plan is a portion of the Campaign and will have it’s own target audiences (segments), budget,

duration, etc. Execution plans are used by real-time bidding engines in the bidding and pricing process.

Campaign Reporting is the collation and aggregation of events produced by the user while interacting with

the displayed Ad.

Real-time Bidding - Campaign execution

As data volumes increase at an unprecedented rate, firms face ever-greater challenges: deliver new

applications faster, apply analytical technologies (such as machine learning) to hundreds of terabytes data (or

more), provide a reliable and engaging user experience, drive digital transformations, and more. How do

these map to the signs that you’ve outgrown Redis?

Real-time bidding is the process of auctioning advertising space to the highest bidder. Publishers of a web

site, device application, etc. sell their advertising space, often called inventory via an auction. Advertisers, via

their DSP, purchase this space by bidding in the auction. The auction is usually conducted through an Ad

Exchange.

The Advertiser that wins the bid has purchased the space from the Publisher and provides a Tag to the

Publisher to display the Ad rendered in the webpage or the device app. The Tag also contains information to

track the user's interaction with the Ad and generate events for reporting.

 4

The following sequence diagram shows a simplified publish-bid-win scenario:

A DSP will receive up to 10’s of Millions of bid requests per second depending on the time of the year and

their geographical market. A bid response is required in about 75 milliseconds and the auction is complete

(win or lose) in about 100 milliseconds.

A DSP solution requires scalable, high throughput, low latency and high availability hardware and software,

and is architected to respond to each bid request with the best price based on the anonymous profile of the

user interacting with the publisher.

The Ad Server plays a significant role in the performance of the Publisher's website or App. If the Ad Server is

sluggish to deliver the Creative, the Publisher appears to have poor performance.

 5

Datastores

User Profile Store

The user profile store often called the cookie store, contains anonymous user profiles detailing the profile’s

- Internal ID

- Audience segments

- Geographic location

- Activity time

- …and many more details

As users usually have more than one device, any given user may have several advertising IDs, supplied by

their devices and from cookies in their browser. Cross-device matching can identify several IDs as the same

user, using data science techniques. This matching is not 100% accurate but is “good enough” for

programmatic advertising.

A typical user profile schema has a record for each device ID that has a pointer to the user profile.

Simplified User Profile Schema

The scale of a user profile store is not trivial and is in the order of billions of records, each access to any

record is expected to have a latency of under 1 millisecond. 10’s of millions of reads and writes occur each

second, every second of the day and every day of the year. The store must be reliable, a user profile store

outage for just 1 hour can cost a DSP hundreds of thousands of dollars in lost revenue.

 6

Latency, Throughput, Scale and Availability
(See: Speed, Scale, Durability and Affordability)

Requirements

Number of records 10’s of billions

Operations per second 10’s of millions

Acceptable latency 1 millisecond or less

Read Write ratio 80% reads 20% writes

Availability 24/7/365 - never down

CAP theorem Prioritize Availability over Consistency

Consistency Weak

The data is denormalized for performance with the goal of the minimum number of database operations.

Example Record Structure

Cookie ID

Bin/Key Field Type Example value

key Cookie Id String

429496729

profile-id User profile Id String
(uuid)

caa6f240-918a-4c66-badd-9f6896a47a3e

Advertiser ID (iOS or Android)

Bin/Key Field Type Example value

key Advertising Id String
(uuid)

c41011f9-35cd-464a-add0-9791b2915eee9

profile-id User profile Id String
(uuid)

caa6f240-918a-4c66-badd-9f6896a47a3e

User Profile

Bin/Key Field Type Example value

key Internal Id String
(uuid)

caa6f240-918a-4c66-badd-9f6896a47a3e

 7

segments Audience

segments

CDT
(Map/List structure)

[

 {

 "id": "6de5c557-73f2-48c0-84c7-

be0f874c5ac8",

 "name": "human readable name",

 ...

 },

 {

 "id": "b4b0dfc6-40c6-4414-a751-

4f3ddb252233",

 "name": "human readable name",

 ...

 }

 ...

]

geo User geo

location

GeoJson {

 "type": "Point",

 "coordinates": [

 12.483354,

 55.724556

]

}

active Active time

periods

CDT
(Map/List structure)

[

 {

 "from": 1543569904,

 "to": 1543656304

 },

 {

 "from": 1543915504,

 "to": 1544001904

 }

]

Campaign Datastore

The campaign datastore is a system of record containing:

- Campaign Definitions

- Execution Plans (line items)

- Advertisers or Advertising Agencies

- Audience segments

- Data cubes

- … other information

Execution Plans are consumed by the bidding engine(s) to match the bid request to the available campaigns

and determine the bid price.

The Execution Plan, and therefore Campaign, performance data is aggregated from the stream of Events and

stored as a data cube. The Campaign User Interface uses this “real-time” data to show campaign

performance. Billing of Advertisers and payment to Publishers is also based on the campaign reporting data

and the campaign store requires strong consistency.

 8

Simplified Campaign Schema

The Campaign schema is denormalized for performance and almost all operations use a primary key to

reference data.

The Campaign datastore has requirements similar to other traditional business systems and is a System of

Record. The datastore requires frequent and numerous updates to the metrics measuring the performance of

a campaign. In a small scale, it is possible to use relational technology, but as scale increases, it is impossible

to scale relational technology at an affordable price point to meet the demand.

Latency, Throughput, Scale and Availability

Requirements

Number of records

Operations per second 100’s of thousands

Acceptable latency 5-15 milliseconds

Read Write ratio 50% reads 50% writes

Availability High availability

CAP theorem Prioritize Consistency over Availability

Consistency Strong

The record structure is denormalized for performance and also has a “document” like data cube to hold the

reporting metrics.

 9

Example Record Structure

Advertiser

Bin/Key Field Type Example value

key Advertiser Id String
(uuid)

2808fd0a-5d55-4ecb-836d-3ff886158cff

budget Advertiser

Budget

Long 120000

Campaign

Bin/Key Field Type Example value

key Campaign Id String
(uuid)

897ab8c3-e2d7-449d-967e-c6447d3f0e89

advertiser-id Advertiser Id String
(uuid)

2808fd0a-5d55-4ecb-836d-3ff886158cff

start Start Date Long
(time stamp)

1541063106

end End Date Long
(time stamp)

1545815106

budget Campaign

budget
(portion of advertiser

budget)

Long 80000

data-cube Campaign

Reporting
(aggregation of

execution plan data)

CDT
(Map/List structure)

{

 "clicks": 35891,

 "views": 145890,

 "conversions": 879

}

Execution Plan

Bin/Key Field Type Example value

key Execution plan Id String
(uuid)

1ded89d9-af69-4cda-9574-99508d3b7a8a

campaign-id Campaign Id String
(uuid)

897ab8c3-e2d7-449d-967e-c6447d3f0e89

advertiser-id Advertiser Id String
(uuid)

2808fd0a-5d55-4ecb-836d-3ff886158cff

start Start Date Long
(time stamp)

1541063106

 10

end End Date Long
(time stamp)

1543569904

budget Execution plan

budget
(portion of campaign

budget)

Long 30000

data-cube Execution plan

reporting

CDT
(Map/List structure)

{

 "clicks": 1209,

 "views": 45201,

 "conversions": 191

}

Tag to Execution Plan

key Tag ID String
(uuid)

d114969b-19ac-474b-bdd0-cdcd9d5e2fbb

ex-plan-id Execution plan ID String
(uuid)

1ded89d9-af69-4cda-9574-99508d3b7a8a

Document vs Relational

The Campaign datastore can be implemented using any database technology and as a system of record

relational databases come first to mind, so why use Aerospike?

Database operations on the Campaign Datastore are simple, single record transactions where Aerospike

excels, and require no multi-record atomic transactions where relational technology excels.

High throughput, high availability and low latency are essential in providing real-time campaign reporting and

an affordable cost.These requirements match the capabilities of Aerospike with the added advantage of a low

cost because of Aerospike’s unique use of Flash storage.

Aerospike Complex Data Types (CDT) are used as the Data cubes for each execution plan. CDTs are the

document store functionality of Aerospike. Updates to elements of a CDT are granular and atomic. Data cube

values (counters, averages, histograms) can be precisely and atomically updated with low latency.

Here is an example of a very simple Execution Plan data cube using a CDT (expressed in JSON)

{

 "datacube": {

 "clicks": 35891,

 "impressions": 145890,

 "visits": 2103,

 "conversions": 879

 }

}

 11

Real-time Campaign Reporting

Each Advertiser/Agency wants to measure the performance of their Campaign. Did the user see the Ad, did

they click on it, play it (video), visit the vendor’s site?

When a user interacts with an Ad rendered by a Publisher a number of events are generated. There are many

kinds of events, some examples are:

- Ad impressions

- Ad clicked

- Ad watched (video)

- Ad watched Duration (Video)

- Visiting the vendor site

- Conversion to a sale

- ...and there are many more

These events indicate the engagement of the user with the Ad and when collated and aggregated represent

the performance of the Execution Plan and the overall Campaign. Events are emitted from the Publisher and

are consumed by the event collector associated with the Ad Server.

For every bid win and Ad served, then event collector will receive 1 or more events, and thus it also requires

high throughput, latency and availability.

Consider the scenario where the user interacts with the Ad and wants to buy. Several events are emitted and

collected to form Campaign reporting.

As bidding and serving are done in real-time, it is desirable for Campaign reporting to be done in near real-

time.

 12

 13

Event Collector

The Event Collector is a high availability web API that receives events sent from the Publisher site. The Tag

encapsulating the Creative (Ad) calls the event collector API. Each event is unique and contains data that

relates the event to an Execution Plan related to a Campaign. A way to think of event data is as raw data or

log level data.

The Event Collector is located geographically and highly parallelized for high throughput, high availability and

low latency, typically using containers (Docker) and orchestration (Kubernetes).

Events are received and recorded in an event datastore (do not confuse this with ‘Event Store’ technology)

for later transmission the Campaign datastore for Campaign and Execution Plan reporting. This is an edge

datastore geographically located with the Event Collector.

 14

Data is propagated from the Event datastores to the Campaign datastore using Aerospike Kafka Connector

and aggregated and reduced in the Campaign service.

It is possible to build this architecture without geolocated Event collectors or datastores when the throughput

is small but on a global scale high throughput and low latency are the basic requirements.

Why use Aerospike as the edge Event datastore? Aerospike allows the event to be “stored and forgotten” by

the event collector. Aerospike’s low latency ensures that the service time for each event is small and this

results in a smaller number of Event Collectors, ultimately saving money.

 15

Aggregator/Reducer

The Aggregator/Reducer receives messages/events from Kafka, aggregates/reduces the raw event data and

updates the data cubes in the Campaign Datastore.

In its simplest form, this process increments counters, more complex scenarios update histograms, matrices,

etc.

Why not simply use Kafka? Events directly into Kafka is certainly possible, but the throughput of each Event

Collector instance will be dependent on Kafka throughput and ultimately the size of the Kafka cluster. The

combination Aerospike, as the Event datastore, and a smaller Kafka cluster allow peek throughput at a lower

cost than using a large scale Kafka cluster alone.

Datastores

Campaign Datastore

The Campaign datastore is described above and includes data cubes for each Execution Plan and optionally

for the Campaign as a whole.

Event Datastore

An edge data store, the Event datastore captures raw events for later processing. Edge data stores are

located geographically and therefore capture the “local traffic” events, for later aggregation and reduction in

the core Campaign datastore. They act as a low latency buffer between buffer between events and

aggregation process, they also are the source data for Data Science.

 16

Latency, Throughput, Scale and Availability
(See: Speed, Scale, Durability and Affordability)

Requirements

Number of Records 100’s of billions

Operations Per Second 100’s of thousands

Acceptable Latency 5-10 milliseconds

Read Write Ratio 50% reads 50% writes

Availability 24/7/365 - never down

CAP Theorem Prioritize Availability over Consistency

Consistency Weak

Simplified event schema

Example Record Structure

Event

Bin/Key Field Type Example value

key String
(uuid)

869a0b93-df9e-4669-9957-ca9e568e3882

event-type Type of event String “CLICK”

tag-id ID of the Tag String
(uuid)

d114969b-19ac-474b-bdd0-cdcd9d5e2fbb

time-stamp Time stamp of

the event

Long
(time stamp)

1570988704deployment

Deployment in Production

High availability, low latency, high throughput and scale are the common theme. Aerospike is all of these, and

the services to capture events, aggregate them and interact with the Campaign also require similar

characteristics.

A successful approach is to use containers with orchestration, specifically Docker and Kubernetes.

 17

Edge Deployment

Deployments located in each geographical datacenter are minimal. Pods are replicated for high availability

and throughput.

Core Deployment

The Core deployment is centrally located and is more sophisticated. Pods are replicated for high availability,

low latency and throughput.

 18

Technology References

Aerospike https://www.aerospike.com/

Kafka https://kafka.apache.org/

Nginx https://www.nginx.com/

Docker https://www.docker.com/

Kubernetes https://kubernetes.io/

https://www.aerospike.com/
https://kafka.apache.org/
https://www.nginx.com/
https://www.docker.com/
https://kubernetes.io/

 19

Conclusions

Aerospike is datastore technology of choice for the AdTech industry because of its low latency, high

throughput, large scale, reliability and low cost of ownership.

We have covered how a DSP uses Aerospike as a User Profile (cookie) store for real-time bidding and how to

use edge-to-core Aerospike technology for fast campaign reporting.

 20

About Aerospike

Aerospike enterprises overcome seemingly impossible data bottlenecks to compete and win with a fraction of

the infrastructure complexity and cost of legacy NoSQL databases. Aerospike’s patented Hybrid Memory

Architecture™ delivers an unbreakable competitive advantage by unlocking the full potential of modern

hardware, delivering previously unimaginable value from vast amounts of data at the edge, to the core and in

the cloud. Aerospike empowers customers to instantly fight fraud; dramatically increase shopping cart size;

deploy global digital payment networks; and deliver instant, one-to-one personalization for millions of

customers. Aerospike customers include Airtel, Baidu, Banca d’Italia, Nielsen, PayPal, Snap, Verizon Media

and Wayfair. The company is headquartered in Mountain View, Calif., with additional locations in London;

Bengaluru, India; and Or Yehuda, Israel.

© 2019 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike logo are trademarks or registered

trademarks of Aerospike. All other names and trademarks are for identification purposes and are the property

of their respective owners.

2525 E. Charleston Road, Suite 201

Mountain View, CA 94043

Tel: 408 462 2376

www.aerospike.com

	Executive Summary
	Demand Side Platform (DSP)
	Real-time Bidding - Campaign execution
	Datastores
	User Profile Store
	Simplified User Profile Schema
	Latency, Throughput, Scale and Availability
	Example Record Structure

	Campaign Datastore
	Simplified Campaign Schema
	Latency, Throughput, Scale and Availability
	Example Record Structure

	Document vs Relational

	Real-time Campaign Reporting
	Event Collector
	Aggregator/Reducer
	Datastores
	Campaign Datastore
	Event Datastore
	Latency, Throughput, Scale and Availability
	Simplified event schema
	Example Record Structure

	Deployment in Production
	Edge Deployment
	Core Deployment

	Technology References

	Conclusions
	About Aerospike

