
WHITE PAPER BENCHMARK

A document use
case comparison:
Aerospike vs.
MongoDB Atlas
Written by Phil Allsopp
Principal Performance and Reliability Engineer
Aerospike

A document use case comparison: Aerospike vs. MongoDB Atlas 2

Contents
Executive summary	 3

Considerations	 4

Testing approach	 5

Infrastructure	 6

Shards (Horizontal partitions)	 6

Test clusters	 7

Data consistency and guarantees	 7

Aerospike⁵	 7

MongoDB⁶	 7

Performance results	 8

Throughput graphs	 9

Latency graphs	 11

Resilience: Failure of a node, process, and diagnosis	 14

Aerospike failure testing	 14

Aerospike takeaways	 16

MongoDB Atlas failure testing	 16

MongoDB takeaways	 17

Total cost of ownership	 18

Conclusions	 19

Afterword	 19

Objection handling	 19

Business impact of database reconfiguration	 20

External maintenance tasks	 21

An operations perspective	 23

Glossary	 25

Appendix A: Test environments	 26

Load Generation Server (LGS) specification	 26

Environment 1 specification: Aerospike	 27

Environment 2 specification: MongoDB Atlas...	 29

Appendix B: What is the Player Protection Simulator?	 31

The Player Protection Database	 32

Player Protection Parameter selection	 32

Reading records	 33

Appendix C: Typical document in a collection/set	 34

About the author	 35

A document use case comparison: Aerospike vs. MongoDB Atlas 3

Executive summary
A benchmark comparison was executed, employing 10 terabytes of JSON data on Google Cloud, between Aerospike 7.0, a
document store, and MongoDB Atlas v7.08, a native document database. Comparisons were made in several areas, including
latency, throughput, and resilience for a mixed read/write/update workload, along with operational considerations.

Since no standard benchmark dataset exists for document data, this benchmark employs document data from a real-world
gaming simulation (protecting players from exceeding limits as they play) in JSON format.

Each vendor’s provided database driver was used with the driver’s default settings.

The results of our tests show:

•	 Throughput-to-VM ratio: Aerospike exhibits nine times more throughput than MongoDB, while MongoDB needs more than
three times the VMs to run the same number of horizontal partitions or shards¹ as Aerospike.

•	 Predictable performance

•	 MongoDB latencies triple, and throughput drops by 38.9% while the database size grows from 0-to-10TB, whereas
Aerospike latencies hold steady, while throughput drops only 5% (See Table 1).

•	 Aerospike write latencies for both p95 and p99 are one millisecond, compared to 15 and 50 for MongoDB, respectively
(See Table 1).

•	 Node failure handling: MongoDB performance drops 80% for 40 seconds during its server failure (see Figure 16).
Aerospike performance drops 15.4% for a similar time period (See Figures 15.1 and 15.2). In addition, MongoDB loses
connectivity when the same failure scenarios are tested and only allows for failovers across a single replica set.

•	 Operations while scaling: While database size elasticity is relatively easy to manage with both systems, there are key
differences operationally:

•	 Aerospike can be resized up or down at any time with no loss of connectivity.

•	 MongoDB Atlas loses connectivity when resizing.

•	 Scaling from a MongoDB Atlas replica set to a sharded cluster is one-way; you cannot go back, and thus, you are prone
to overprovisioning.

•	 Total cost of ownership (TCO): Aerospike has up to 5.4 times better TCO, depending on the ultimate Aerospike licensing
costs factored in for the same workload and the performance and resilience advantages cited herein (see Table 4).

¹ As Aerospike partitions data automatically and distributes evenly across nodes, for the purpose of this paper, one shard in Aerospike
is equivalent to an instance or server. To learn more on Aerospike horizontal scaling, see: https://aerospike.com/compare/mongodb-vs-
aerospike/#scalability_options.

https://aerospike.com/compare/mongodb-vs-aerospike/#scalability_options
https://aerospike.com/compare/mongodb-vs-aerospike/#scalability_options

A document use case comparison: Aerospike vs. MongoDB Atlas 4

Considerations
This benchmark report tests a number of factors that impact a customer’s real-world use of the database. We asked the
following questions, which we materialized through a set of tests and statistical analyses:

1.	 How many write and read transactions per second (‘TPS’) can this database handle?
When compared to another vendor’s database. This is a straight throughput comparison for an application that models a
real-world use case.

2.	 How quickly does my database respond (‘latency’)?

3.	 Can my business continue to run smoothly when my database encounters a significant problem?
This is always materially important to a customer (albeit a rare thing to consider when benchmarking).

4.	 What happens when I need to temporarily bring a node out of service to patch the O/S?
How well does the database perform when running an external maintenance task?

5.	 How well does the database handle re-configuration while under load?
If you elect to add another node as your workload has increased, how well does this work? Conversely, if you just had a
busy holiday season and now want to scale back down, how well does that work, and will this impact the business while the
scale-down progresses?

MongoDB Atlas Aerospike Aerospike advantage

Throughput, mean
(OPS)

35,968 321,000 9x

Throughput of decay as
% of mean
(max - last) / mean

38.9%
(46.1k - 32.2k) / 35.8k

5%
(332k - 316k) / 321k

7.8x

P95 latency
over 10TB ingestion period

5ms – 15ms 1ms 5x to 15x

P99 latency
over 10TB ingestion period

12ms – 50ms 1ms 12x to 50x

VMs required 18 VMs 5 VMs 3.6x

Servers needed
per shard added¹

3 servers 1 server 3x

Table 1: Aerospike vs. MongoDB Atlas results summary from 0 – 10TB as data is generated.

A document use case comparison: Aerospike vs. MongoDB Atlas 5

Testing approach
There are numerous ways to run tests against databases, such as stress tests, soak tests, load tests, etc.

There are many different benchmark tests that can be run, such as asbench TPC-C, YCSB, and many more—the list is long. It is
important to remember that different workloads will materialize different outcomes in comparative testing. This applies equally
to standard benchmark testing and application-specific workload testing.

There are singular benefits you can glean from these synthetic benchmarks as they allow direct comparisons of a particular test
to be done. Some of these tests try to simulate a ‘typical application’ with a ‘typical database access pattern.’ In contrast, other
tests allow you to simulate specific scenarios, e.g., “What happens if we use ten threads to run 100 database operations versus
100 threads to run ten operations each?” and so on. This may help inform you what works well with a particular database system
so that you can develop or tune your application code appropriately.

However, companies want to test against their own real-world applications to determine the suitability of a specific database.

With this in mind, we examined the performance of a preexisting application that was well-suited to any NoSQL database to
provide an objectively comparative test with conclusions that provide insights beyond the specificity of benchmarking.

To ensure that each test started from a clean slate, Ansible scripts instantiated a new cluster for each test using either the
MongoDB Atlas API or Aerospike’s AeroLab tool.

Figure 1: Load generator system run rules.

Figure 2: Main evaluation runs.

https://docs.aerospike.com/tools/asbench#:~:text=The%20Aerospike%20Benchmark%20tool%20is,performance%20of%20an%20Aerospike%20cluster.
https://github.com/aerospike/aerolab

A document use case comparison: Aerospike vs. MongoDB Atlas 6

Aerospike leveraged two applications:

1.	 Player Protection Game Simulator, as it was easily possible to customize this application’s access to the database (while
maintaining consistency of application logic) to get the best out of both Aerospike and MongoDB from a complex real-
world application.

2.	 Player Protection Reader application simulates a consistent amount of reads per second and adjusts in real-time as
necessary to achieve the desired number of read transactions per second.

The Game Simulator application is write-heavy, consisting of a combination of inserts (two-thirds) and updates (one-third). It
also incorporates some atomic operations using the Aerospike Operate² and MongoDB Transaction³ handling methods. The
Game Simulator generates no reads

The Reader application was used to generate a fixed 2000 transactions worth of user data per second against the databases.
(See Appendix B for more details.)

Between the two applications, the resultant Read/Write ratio was targeted to approximately 20/80 R/W.

This Game Simulator application was developed as a showcase application with one of our partners. It is meant to demonstrate
a real-world application of the Aerospike client and the database access patterns and data documents that suit a NoSQL
JSON-style document database.

We stressed each database using multiple Load Generation Servers (LGSs) running the Player Protection Game Simulator and
the Player Protection Reader in parallel.

We also evaluated the outcome of a partial database failure.

Infrastructure

Shards (Horizontal partitions)
The first question is, “Why did we choose five shards for both MongoDB and Aerospike?” to run a 10 TB test. We made our
decision because we wanted to be fair to and work well with MongoDB. Aerospike works well with 3, 5, 8, or however many
shards you may want to use.

We looked around for solid advice from MongoDB staff members’ blogs and their technical posts for guidance. One such post⁴
cited that MongoDB Atlas allows up to 4TB per shard, and their guidance indicated that 1TB was a bit easier to manage but also
notes that, “Well, we could go higher here.”

Given this and many other similar MongoDB blogs, we realized that 10 1TB MongoDB shards would need 30 VMs just for the
basic replica sets. We felt this was a little over the top for a fairly small 10TB test and chose the midpoint between 0 and the Atlas
Maximum of 4TB, thus 2TB, which meant five shards.

We then used five Aerospike shards to match the five MongoDB Atlas shards.

²https://aerospike.com/docs/server/guide/transactions
³https://www.mongodb.com/docs/manual/core/write-operations-atomicity/
⁴https://www.linkedin.com/pulse/mongodb-sizing-guide-sepp-renfer

https://aerospike.com/docs/server/guide/transactions
https://www.mongodb.com/docs/manual/core/write-operations-atomicity/
https://www.linkedin.com/pulse/mongodb-sizing-guide-sepp-renfer

A document use case comparison: Aerospike vs. MongoDB Atlas 7

Test clusters
MongoDB Atlas is a DBaaS, and the test cluster was set up and configured using the Atlas API.

Aerospike was set up using IaaS using the publicly available AeroLab tool with a general purpose production configuration.

Aerospike typically uses NVMe drives as part of its standard deployment. However, given that MongoDB Atlas is unable to use
NVMe drives on the GCP platform, this would have been an unfair advantage to Aerospike in the performance evaluations.

Therefore, Aerospike was set up as a self-managed install on GCP and MongoDB Atlas instances running on GCP were
selected, with neither using NVMe devices.

Thus, SSD persistent disks for both Aerospike and MongoDB storage were used.

(Note: Aerospike’s standard practice is to use locally attached NVMe which is significantly quicker than the network-attached
SSD used in these tests.)

Aerospike was set up on GCP n2 instance types that used Ice Lake CPUs. It did not use the significantly faster CPU options
that were available (e.g., C3 or C3D Instances, Intel Sapphire Rapids, AMD Genoa, etc.). GCP describes the selected Aerospike
instance types as “balanced price/performance.”

Data consistency and guarantees
The selected consistency and guarantees were left at the default setting for each database. This should offer a good balance of
durability vs performance for each system.

The explanatory text shown below describes the default settings and is duplicated from the respective vendors’ websites.

Aerospike⁵
By default, Aerospike applies writes immediately to replicas. When the network is operating correctly, this will result in data
consistency by involving all replicas of a record during each transaction, and not creating situations where there are stale or dirty
reads. In the case where network partitions are occurring, Aerospike will prioritize availability over consistency --- Aerospike will
allow reads and writes in every sub-cluster.

The default Aerospike server-client behavior provides these behaviors:

•	 Write transactions (including deletes and user defined function (UDF) applications) will write locally, then write all replicas
synchronously before successfully returning from the transaction.

•	 Read transactions only consult a single replica (usually the master) even during cluster reconfiguration.

MongoDB⁶
The default write concern is { w: “majority” }

Write concern for replica sets describe the number of data-bearing members (i.e. the primary and secondaries, but not arbiters)
that must acknowledge a write operation before the operation returns as successful. A member can only acknowledge a write
operation after it has received and applied the write successfully.

⁵https://docs.aerospike.com/server/architecture/consistency#high-availability-mode
⁶https://www.mongodb.com/docs/manual/core/replica-set-write-concern/

https://github.com/aerospike/aerolab
https://cloud.google.com/blog/products/compute/compute-engine-n2-vms-now-available-with-intel-ice-lake
https://docs.aerospike.com/server/architecture/consistency#high-availability-mode
https://www.mongodb.com/docs/manual/core/replica-set-write-concern/

A document use case comparison: Aerospike vs. MongoDB Atlas 8

For replica sets, a write concern of w: “majority” requires acknowledgment that the write operations have been durably
committed to a calculated majority of the data-bearing voting members. For most replica set configurations, w: “majority” is the
default write concern.

Performance results
The Player Protection Game Simulator was run on multiple Load Generation Servers (LGSs).

The Aerospike cluster consisted of five nodes (VMs), and the MongoDB cluster consisted of an R200 five-shard cluster, which
equates to a total of 18 VMs. Each Aerospike and MongoDB VM had 32 vCPUs and 256GB of memory. Each evaluation run
started with a newly created set of database nodes, fresh disks, and so on. (Please see Appendix A for a full description
of hardware.)

The Player Protection Game Simulator works on a small subset of the dataset at any one time.

This means that a small portion of the database is very hot, a larger part of the database is warm and the largest proportion of
the database is reasonably cold at any point.

This manifests itself as a fairly consistent TPS throughput over time which explains the mean performance being very close to
peak performance on the following throughput summary graph. This should also clarify why the peak and mean TPS are very
similar at different dataset sizes on the same database engine.

The results show Aerospike to be the clear throughput winner:

MongoDB Atlas Aerospike Aerospike advantage

Throughput, mean
(OPS)

35,968 321,000 8.9x

Throughput of decay as
% of mean
(max - last) / mean

38.9%
(46.1k - 32.2k) / 35.8k

5%
(332k - 316k) / 321k

7.8x

P95 latency
over 10TB ingestion period

5ms – 15ms 1ms 5x to 15x

P99 latency
over 10TB ingestion period

12ms – 50ms 1ms 12x to 50x

VMs required 18 VMs 5 VMs 3.6x

Servers needed per
shard added

3 servers 1 server 3x

Table 2: Performance, VMs, and Servers summary for five shards of Aerospike versus MongoDB Atlas on a R200 cluster.

A document use case comparison: Aerospike vs. MongoDB Atlas 9

Throughput graphs

Aerospike’s maximum and mean differ by just over 3% on the 10TB dataset test showing that Aerospike performance is solid,
reliable and consistent as the dataset size increases.

Figure 3: Peak and Mean throughput comparison as reported by the databases.

Aerospike 10TB

MongoDB 10TB

25,000 50,000 75,000 100,000 125,000

TPS throughput comparison (longer is better)

150,000 175,000 200,000 225,000 250,000 275,000 300,000 325,0000

Peak TPS Mean TPS

Figure 4: Aerospike throughput as presented in Grafana over 7 hours.

A document use case comparison: Aerospike vs. MongoDB Atlas 10

MongoDB’s Maximum (when the database size was just getting initiated) and Mean TPS results are quite different, as is its Last
(when the database hit 10 terabytes) showing that the performance is not consistent. It’s clear from the graphs that MongoDB
performance decays as the dataset size increases.

Figure 5: MongoDB Atlas throughput over the whole 10TB ingestion period, as presented in Grafana, shows performance decay when scaling.

Figure 6: MongoDB Atlas throughput as presented in Grafana, zoomed in to display a 6-hour period exhibiting how varied the throughput is.

A document use case comparison: Aerospike vs. MongoDB Atlas 11

Latency graphs

Latency, p95 write comparison

All Aerospike latency graphs are reported by Prometheus/Grafana console/dashboard.

All MongoDB latency graphs are reported by MongoDB Atlas console/dashboard, all shards.

MongoDB Atlas Aerospike Aerospike advantage

Mean (OPS) 35,081 321,000 9x

Last (OPS) 32,179 316,000 9.8x

Max (OPS) 46,104 332,000 7.2x

Variance 38.9% 5% 7.8x

Table 3: Throughput comparison as database builds from 0 to 10 terabytes.

Figure 7. Aerospike consistently has low write latency at 95% across the database build from 0 to 10 TBs.

Figure 8: MongoDB Atlas p95 write latency: MongoDB p95 write latency for the five primary shards worsens from either ~1ms or 5ms (depending

on the shard) to 15ms as the database builds from 0TB to 10TB over a three-day period.

A document use case comparison: Aerospike vs. MongoDB Atlas 12

Latency, p99 write comparison

Latency, p95 read comparison

Figure 9: Aerospike consistently low write latency at p99 while the database builds from 0 to 10 TBs.

Figure 10: MongoDB Atlas p99 write latency: MongoDB p99 write latency worsens for the five primary shards from ~5ms or 12ms (depending on

the shard) to 50ms as the database builds from 0TB to 10TB over a three-day period.

Figure 11: Aerospike consistently low read latency at p95.

A document use case comparison: Aerospike vs. MongoDB Atlas 13

Latency, p99 read comparison

Figure 12: MongoDB Atlas read latency p95, displaying the 5 primary shards.

Figure 13: Aerospike consistently low read latency p99.

Figure 14: MongoDB Atlas read latency p99.

A document use case comparison: Aerospike vs. MongoDB Atlas 14

Resilience: Failure of a node, process, and diagnosis
We wanted to test node failures while a system was under load.

For the avoidance of any doubt, we need to be clear that the failures we are simulating are not identical. The Aerospike failure
test is significantly more severe than the MongoDB Atlas failure test.

We credit MongoDB for making this failure test option available and we would like to see this functionality available in more
DBaaS offerings.

Aerospike test of a node failure
No preparation was done. A random Aerospike node was stopped, and all database data on that node was deleted before the
node was restarted, all while the database was under load.

This was a more difficult failure to handle than MongoDB’s straightforward restart of a primary node.

MongoDB test of a primary node restart
A primary Mongo node was restarted while under load using the test primary failover⁷ option in the Atlas dashboard. The data
on that node was not deleted.

Note: The reason these tests differ is that MongoDB Atlas presents a DBaaS interface and consequently the failure simulation
options were limited to what the DBaaS permits, whereas with Aerospike we had access to the hardware and O/S which
allowed us to test a more serious failure scenario.

The MongoDB documentation states:

The following statements describe Atlas behavior during rollovers and when testing failover in sharded clusters:

•	 If the original primary accepted write operations that had not been successfully replicated to the secondaries when
the primary stepped down, the primary rolls back those write operations when it re-joins the replica set and
begins synchronizing⁸.

•	 Only the mongos processes that are on the same instances as the primaries of the replica sets in the sharded cluster
are restarted.

•	 The primaries of the replica sets in the sharded cluster are restarted in parallel.

Aerospike failure testing
An Aerospike cluster was set up.

This was a standard five (5) node cluster as described in environment 1 of Appendix A that a competent Aerospike practitioner
would normally configure for production use.

The Load Generation Servers (LGS) were started. Writes and reads were started as per the main test with half as many LGS
running, twenty (20) LGS.

For a standard commercial installation, Aerospike sizes clusters for peak throughput plus some overhead to accommodate
failures, and it is in this spirit that we conduct this test, not with a fully saturated cluster.

⁷https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/
⁸https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/

https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/
https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/

A document use case comparison: Aerospike vs. MongoDB Atlas 15

At the point that 1TB of data had been inserted into the database the following steps were taken:

1.	 Node stopped: A random node was stopped cleanly (using systemctl stop aerospike). Any node can be
chosen as all nodes take up an equal amount of the load. E.g. in a five-node system, each Aerospike node takes primary
responsibility for one-fifth of the data.

2.	 Data wipe: We decided to make it harder for Aerospike by removing all the data on the stopped node. The first 8MB of
each data storage device was zeroed out using the Linux blkdiscard command, this makes sure that when this
Aerospike node joins the cluster, Aerospike considers the node to be a brand new empty node.

3.	 Reboot: The node was then rebooted, using the Linux command reboot .

4.	 Start Aerospike: Once the node restarted, the systemctl start aerospike command was issued.

5.	 Data migration: The node then starts the partition migration process (the Aerospike node recovery process) and when
ready the node will take over primary duties for a portion of the dataset, in this case one-fifth of the dataset.

While steps one to five occur, there is never a situation where the cluster is unavailable, even though some open transactions
that are connected to the node will fail as soon as the database is stopped, those transactions simply need to be retried (just
once), these transactions will be simply redirected to another Aerospike node that took over the duties of the failed node.

This kind of retry-upon-failure is standard well-written application behavior and the application will simply see a small drop in
performance for around a few seconds while Aerospike reconfigures itself.

Figure 15.1 - Aerospike during a node failure: no loss of service.

Figure 15.2 - “Zoom in” of Aerospike during a node failure (as it’s hard to notice): no loss of service with Min dropping from 149K to 126K.

A document use case comparison: Aerospike vs. MongoDB Atlas 16

Even upon close examination, it’s hard to see where the node dropped out and later rejoined. It happened at 02:26 on the graph
above. There is never a moment where there is a total database connectivity loss - also known as an outage.

Aerospike takeaways
Aerospike smoothly handles the failure of a node and continues to deliver connectivity to an application even with this
example where 20% of the Aerospike cluster was just stopped dead on the spot followed by fully deleting the database data
on that node.

When you are dealing with financial services, fraud detection, payment systems, AdTech, e-commerce, and any other use case,
this kind of resilience and continued responsiveness is critical to facilitate a good service provider experience and a good
end-user experience.

MongoDB Atlas failure testing
A MongoDB Atlas database cluster was set up.

This was a standard five shard R200 configuration that a competent MongoDB Atlas practitioner would normally configure
for production use - i.e. a cluster with enough headroom/contingency to ideally the same amount of client throughput to be
achieved before and after the loss of a single primary database node.

The LGS were started and writes and reads were started as per the main test, with half as many LGS running
i.e. twenty (20) LGS.

At the point that 1TB of data had been inserted into the database the following steps were taken:

1.	 The MongoDB Atlas console allows you to test primary failover. This action was taken at the six minute point, at 07:16:00

2.	 When you submit a request to test primary failover, Atlas simulates a failover event⁹. During this process:

•	 Atlas shuts down the current primary.

•	 The members of the replica set hold an election to choose which of the secondaries will become the new primary.

•	 Atlas brings the original primary back to the replica set as a secondary. When the old primary rejoins the replica set, it
will sync with the new primary to catch up any writes that occurred during its downtime.

MongoDB Atlas DB delayed restarting the primary for three minutes and twenty nine seconds (until 07:19:29) after the UI
element was clicked. We can assume that MongoDB Atlas was preparing for the primary failover test for just over three
minutes, whereas in a real world failure, there is no prep time.

3.	 A significant performance hit was seen where the write TPS dropped to 7192 TPS from ~36,000 before recovering after
around 40 seconds.

⁹https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/ (retrieved 2024-01-24).

https://www.mongodb.com/docs/atlas/tutorial/test-resilience/test-primary-failover/

A document use case comparison: Aerospike vs. MongoDB Atlas 17

MongoDB takeaways
When a MongoDB primary server fails, an election takes place between the remaining secondaries, one of those secondaries is
elected and takes over the role of primary and then the cluster continues.

The key takeaway is that the performance takes a significant 80% hit for the period of the server failure.

For some organizations a 40 second period where there is wobbly performance before recovering is considered to be a fairly
fast failover and can be rather undesirable yet begrudgingly acceptable.

When you are dealing with financial services, fraud detection, payment systems, AdTech, e-commerce, and any other
use case that affects a public-facing service and thus can impact a user experience, a 40-second period is a significant amount
of time during which MongoDB has a performance hit under what Aerospike feels should ideally be an instantly recoverable
failure scenario.

Figure 16: Zoom-in of MongoDB Atlas showing failure when issuing a node restart to test reliance, a large performance drop is seen.

A document use case comparison: Aerospike vs. MongoDB Atlas 18

Total cost of ownership
One area that should not be overlooked when comparing Aerospike to MongoDB Atlas is the cost to run each. For this
benchmark with a 10TB workload, Aerospike has up to 5.4 times the cost advantage depending on Aerospike Database
7 license charges. However, given the sizable cost differential listed in Table 4, below, it would not be much of a stretch to
envision a cost advantage for Aerospike. Furthermore, when considering the performance advantages, any cost advantage is
meaningful when considering price-performance. As Aerospike does not publish its software licensing costs, one would have
to contact sales@aerospike.com for more information.

Instance¹⁰
(per instance details)

Instance cost
per hour

Instance cost
per month¹¹

Number of
instances

Cost,
annual¹²

Aerospike GCP
n2-highmem-32
256 GB memory
32 vCPU
Intel Cascade Lake CPU
4x1500 GB storage (PD SSD, Zonal)
us-central1-a

- $1,917.35¹³ 5 $115,041

MongoDB
Atlas

GCP
R200 Cluster
32 vCPU
256 GB memory
4096 GB storage
5 shards

$71.54¹⁴ $52,224 - $626,690

Aerospike
advantage

Up to 5.4x¹¹

Table 4: Total cost of ownership (TCO) for Aerospike vs. MongoDB Atlas for 10 TB document workload.

¹⁰ See Appendix A, Environment specifications for more detail.
¹¹ 1 year committed for GCP instances for Aerospike.
¹² Costs for Aerospike do not include 10TB of Aerospike Database 7 software licensing costs. Contact sales@aerospike.com

for more information.
³ GCP instance costs that Aerospike used: https://cloud.google.com/products/.
¹⁴ MongoDB Atlas instance costs with storage and shards as calculated at https://cloud.mongodb.com and shown in Appendix A,

Environment 2.

mailto:sales@aerospike.com
https://cloud.google.com/products/calculator?hl=en&dl=CiQyMGU2MjM0Ni04OTA3LTQ1ZmUtYWE5MS1kOTE5NWU5NzJmNDgQCBokQzNDRjg4RUQtRDAyNi00MDFFLUFFOTMtRDIyQUNCNjFFMTVF
https://cloud.mongodb.com/v2/60cbea25d8a5e4665e4cfcdf#/clusters/edit?filter=advanced
mailto:sales@aerospike.com
https://cloud.google.com/products/
https://cloud.mongodb.com/

A document use case comparison: Aerospike vs. MongoDB Atlas 19

Conclusions
Overall, it is worth considering Aerospike when you have NoSQL database needs; it runs faster, scales better, is more resilient, is
easier to maintain, and will have significantly lower TCO than MongoDB Atlas:

•	 Aerospike exhibits nine times the throughput compared to MongoDB Atlas using the same number of shards on 3.6 times
fewer vCPUs.

•	 Aerospike scales linearly, whereas MongoDB does not.

•	 Aerospike handles node failures smoothly and is available at all times; MongoDB performance drops drastically when a
failure occurs and takes some time to fully recover when the same failure scenarios are tested.

•	 Aerospike is self-healing across the whole cluster, and MongoDB allows for failovers across a single replica set.

•	 Database size elasticity is relatively easy to manage with both systems;

•	 Aerospike allows resizing up or down at any time with no connectivity loss.

•	 MongoDB Atlas loses connectivity when resizing.

•	 However, if you scale from a MongoDB Atlas replica set to a sharded cluster, you cannot go back.

•	 Aerospike has a significantly lower TCO than MongoDB Atlas with significantly better performance levels.

Afterword

Objection handling
It’s easy to offer criticism (whether justified or not) to any comparison exercise so we’ll quickly list a few of the expected
criticisms along with our thoughts.

1.	 “The test wasn’t fair. It’s write heavy, not 50/50 read/write.”

It’s fairer to say the Player Protection Game Simulator application is write and update-heavy, not just write-heavy. This write/
update profile is in the nature of the use case. The application accepts large quantities of real-time data at high velocity from
clients, and that data is either stored directly as a recorded data point or used to update counters, sums, and aggregates,
which are then used as part of the intervention calculations.

The game reader app introduces a read load in parallel to the write/update profile of the Game Simulator. As a result, the
read latencies for each vendor were similar and the resultant workload approximated 20/80 read/write.

2.	 “MongoDB Atlas is a DBaaS and Aerospike is a cloud VM-based application.”

We expect that MongoDB has optimized its application as well as it can (the right server vCPUs, O/S settings, drives,
network access, etc.).

Aerospike typically uses NVMe drives (but used persistent SSD storage for this test). MongoDB would have called out any
NVMe usage as they cannot use those same fast drives on GCP (for unspecified reasons - perhaps cost).

Aerospike did almost no optimization of the Aerospike database; it was simply a selection of three midrange SSD persistent
drives per node.

A document use case comparison: Aerospike vs. MongoDB Atlas 20

3.	 “GCP was chosen deliberately over other platforms for some benefit, maybe because MongoDB Atlas does not
support NVMe on GCP.”

GCP was simply a choice amongst one of the main hyperscaler’s platforms. With any platform, you could argue that one
has some benefit over another.

With respect to the NVMe question, (as mentioned above in #2), Aerospike actually avoided their own best practice
guidance which is to use local NVMe drives and instead used Network Attached SSD Persistent drives (a midrange choice
of drive) to play more fairly against MongoDB.

4.	 “You are keeping the benchmark code to yourselves so we can’t see what you did.”

The Player Protection Game Simulator application code has been released to https://github.com/aerospike-community/
safegaming, along with the details of the test parameters so that you can test it yourself.

5.	 “You didn’t follow your own good benchmarking guidelines, specifically the 48-hour minimum soak period
for Aerospike.”

We’d like to agree… however:

With respect to the 48-hour minimum test period, Aerospike would have ended up around the 80TB user data size, which
would have skewed the instance and storage sizes and would no longer be a fair test as Aerospike would have a dataset
some eight times larger than MongoDB.

6.	 “Aerospike tests used RF of 2 whereas MongoDB has an effective RF of 3, that suggests Aerospike is only doing
two-thirds of the work that MongoDB is doing.”

Many Aerospike customers use an RF of 2 because Aerospike can automatically migrate and rebalance the cluster in the
event of a node failure, starting 1.5 seconds after a failure is identified by Aerospike (the default).

MongoDB Atlas requires a minimum of three servers per replica set. This is because of the architectural choices made by
MongoDB, meaning an odd number of servers is required.

Even calculating two-thirds of the performance of Aerospike still shows Aerospike to be significantly faster than MongoDB
on this workload.

7.	 “How can you cite the Total Cost of Ownership? Aerospike isn’t disclosing its licensing costs!”

This is easily remedied by contacting an Aerospike sales representative to fill in the blanks, so to speak, as instance costs
are clearly cited. Any total cost advantage is notable, especially given the performance advantages are multiples better, so
price-performance overall would be significant.

Business impact of database reconfiguration
Once you have been working with a cluster of either Aerospike or MongoDB for a while, there will come a time when you will
need to expand or shrink the cluster.

How do Aerospike and MongoDB handle this capacity elasticity?

Aerospike

With the Aerospike database, it’s really easy. When you need to scale up, you simply add one or more nodes to the cluster.
These nodes can be larger, or you could just add more of the same, you might want to replace all the nodes with nodes that
have newer or more storage, or you may just have a corporate rule that servers get replaced on e.g. a three-year schedule. With
Aerospike, you add a new node by installing the Aerospike software, setting up the config file to match the existing nodes, and

https://github.com/aerospike-community/safegaming
https://github.com/aerospike-community/safegaming

A document use case comparison: Aerospike vs. MongoDB Atlas 21

starting the software. The Aerospike database will work the rest out, your data will be migrated automatically without drama.

When you need to upgrade to handle a peak in traffic, you can just add capacity. The Aerospike database will reconfigure and
rebalance itself, and when the peak has finished, you can just remove that node to scale back down.

Aerospike does not experience any service interruption while you scale up or down. These scale-down and scale-up effects
were witnessed in the above failure test in removing, zeroing out, and then re-adding that node.

MongoDB

MongoDB Atlas allows you to upgrade from one tier to another tier; it allows you to increase the storage size, size of a replica set
and more. It also allows you to scale down a replica set to a smaller replica set. This appears easy to execute.

With MongoDB, you are advised to scale vertically (also known as “get a bigger box”) but there will be a limit to how far this can
take you.

Once you get beyond a certain vertical scaling limit, MongoDB Atlas allows you to upgrade a single replica set to a sharded
configuration. Once you have a sharded configuration, you cannot go back to a replica set. This is a strictly one-way operation.

MongoDB has service interruptions while you scale up or down or adjust tiers, as this requires a replica set election as the
primary node in a replica set is removed and updated.

External maintenance tasks
Here we considered the impact on performance of running an external maintenance task, either administratively controlled by
yourself or forced upon you by the vendor.

For both databases, we have configured them in the way that a competent practitioner would normally configure them for
production use—i.e., clusters with enough headroom/contingency to allow the same amount of client throughput to be
achieved before and after the maintenance tasks were executed on a single primary database node.

For a workload, a single Load Generator Service (LGS) was used with the Player Protection application, and the application was
executed using 16 concurrent players.

MongoDB Atlas

It feels like there shouldn’t be much maintenance work to do on a MongoDB Atlas cluster as it is a DBaaS; however, there are
situations where you may wish to change the cluster size, tier, or some other similar operation. These operations can incur a
short-lived yet significant hit where you have no connectivity to your MongoDB Cluster.

With Atlas, you can select maintenance windows for most things, but in this day and age of 24-hour businesses (for which you
would likely need a product like MongoDB or Aerospike), you should not have to accept a situation where you experience an
outage because of maintenance requirements.

Quoted directly from MongoDB’s site:

“Atlas performs urgent maintenance activities such as security patches as soon as they are needed without regard to
scheduled maintenance windows.”

“Once you schedule a maintenance window for your cluster, you cannot change it until any ongoing maintenance
operations have been completed.”

“This procedure requires at least one replica set election during the maintenance window per replica set.”

A document use case comparison: Aerospike vs. MongoDB Atlas 22

The last paragraph seems fairly innocuous until you appreciate that each shard (each shard is a distinct replica set) can have its
own small outage.

However, there will still be some effect/”glitch” akin to the behavior where you lose connectivity akin to what was seen in the
above section, MongoDB Atlas failure testing.

Aerospike

With Aerospike, you can choose to quiesce a node. The quiesced node can undergo any necessary maintenance (e.g., an O/S
upgrade, patch day, etc.). You can then simply reverse the quiesce operation and carry on smoothly.

This is particularly powerful as resizing nodes, updating nodes, and any other standard maintenance task against an Aerospike
cluster or node can be done with almost no impact on the database.

Shown below is the impact of running maintenance on a node after quiescing the node first; there is hardly any impact.

The sequence of events is as follows: apply a load, wait six minutes, quiesce a node, issue a recluster command, stop Aerospike
on that node, remove that node from the cluster, wait a minute to simulate some maintenance work, restart that node (reboot),
and then restart Aerospike.

For comparison, here is a performance graph showing an Aerospike DBA making a mistake and forgetting to quiesce the node
before the maintenance was done. Even with a mistake like this one, Aerospike only sees a small performance impact when
under heavy load, and the database continues to accept and handle queries successfully at all times.

Figure 17: Quiescing an Aerospike node at 03:40 has no impact on throughput.

Figure 18: The impact of a DBA mistake showing only a small throughput impact against Aerospike.

https://docs.aerospike.com/server/operations/manage/cluster_mng/quiescing_node

A document use case comparison: Aerospike vs. MongoDB Atlas 23

An operations perspective
For this section, we’ll assume the role of an operations team lead, making sure things are running smoothly and properly on the
selected platform and database.

What we want is to finish work at a decent hour, have no interruptions over the weekend, and not be concerned with needing to
change personal plans. We don’t want to be worried that something will break and cause panic, requiring a significant amount
of time on calls while trying to stabilize the chosen database.

There is also a budget to work with—we can’t just hire lots of staff or have ten redundancies per node.

So can Aerospike and MongoDB give us what we want?

Aerospike

To be overly safe for this use case with Aerospike, we would use the Rack Aware Functionality (which ensures the master and
replicas are kept separate in different racks across availability zones) and set the Replication Factor (RF) to 3.
That’s it—we’re done.

When using the default Aerospike high availability (AP in CAP theorem-speak) mode, the RF can be changed on-the-fly¹⁵, so if
one has a long weekend planned, holidays coming up, or has staff illnesses, etc., one can adjust the system to RF=current RF+1
to offer more resilience. This way one can be more comfortable for that period - although this will use more storage for the
duration, it will not cost any more in license fees as Aerospike charges by unique data, not the number of servers.

If there is a node failure or a rack failure, one would be covered. The moment a node failure is recognized - the default amount
of time this would take is 1.5 seconds (10 consecutive connection failures of 150ms each is the default trigger) - Aerospike will
smoothly migrate partitions from one node to another to spread the load around the available nodes to make sure there are
three full copies of the data (the RF=3 desired state as I requested) spread out over the remaining nodes.

This can take a few minutes, but it’s all built-in and automatic, and you have database availability throughout the migration.
Assuming the initial sizing was executed correctly as per Aerospike guidance, you will still have the base performance that you
need to achieve your performance SLAs, and there will be no outage of the database whatsoever.

In the event of a permanent failure of the node or rack, one can simply bring up a fresh node or a rack, and connect it to the
existing cluster. The Aerospike database will automatically migrate the data partitions and rebalance things quickly, smoothly
and without any further effort on an operator’s part.

Note, as per the External Maintenance Tasks section, that you can quiesce a node before any maintenance is undertaken. This
is if you want to avoid migration/rebalancing while doing work on a node. When there is a petabyte of user data (not uncommon
across Aerospike customers), the migration can be a network-heavy task—there is no reason to impact it with simple
maintenance work.

Aerospike operational downtime

Aerospike doesn’t have any operational downtime for maintenance work.

If sized correctly, Aerospike won’t have any downtime and will continue to offer the same SLA guarantees, handling the same
target TPS regardless of whether a rack or a node has failed. It will offer the same SLA guarantees and uptime guarantees while
you do your maintenance tasks. Aerospike smoothly handles - all automatically - the partition migrations of the data over the
remaining nodes when required with zero operator intervention.

¹⁵ https://docs.aerospike.com/server/reference/configuration#replication-factor

https://aerospike.com/docs/server/architecture/rack-aware
https://docs.aerospike.com/server/reference/configuration#replication-factor

A document use case comparison: Aerospike vs. MongoDB Atlas 24

If you want to expand the cluster, simply instantiate a new node, install Aerospike, add the IP or DNS name of an existing node to
that node’s configuration file, and start Aerospike. If you need to shrink your cluster, then simply decommission a node. Again,
Aerospike handles the contraction automatically.

Seasoned operations team members are aware that firewalls and networks etc. will also need to be configured. However, this is
the standard basic operational detail we all go through; nothing out of the ordinary is needed for the Aerospike database.

MongoDB Atlas

It’s more difficult to determine the exact internal processes used with a MongoDB Atlas cluster as Atlas is a DBaaS, but in
testing, it is possible to simulate a primary node restart - note this is not a failure but a restart. You can click on the ‘restart
primary’ button in the console/dashboard, and around two to three minutes later, you see performance hit for around 40
seconds, followed by a recovery of the cluster.

MongoDB operational downtime

When a primary node fails or cluster maintenance is done, i.e. any time a replica set election takes place, an outage is observed,
this can be as low as 16 seconds (in our testing).

Clearly, an undesirable operations environment.

A document use case comparison: Aerospike vs. MongoDB Atlas 25

Glossary

Aerospike AP mode An Aerospike operating mode is Available and Partition-tolerant (AP) as defined in the
CAP theorem.

Aerospike SC mode An Aerospike operating mode is Consistent and Partition-tolerant (CP) as it pertains to the
CAP theorem. Aerospike refers to this as Strong Consistency mode (SC)

Aerospike migration Aerospike balances data in the cluster by migrating it between cluster nodes. Data moves as
a part of a partition and is monitored on a per-namespace basis. For each namespace, every
record is mapped to one of 4096 partitions

Aerospike partition Each namespace is divided into 4096 logical partitions, which are evenly distributed
between the cluster nodes. This means that if there are n nodes in the cluster, each node
stores ~1/n of the data

Aerospike quiesce This allows an Aerospike node to become temporarily dormant. This is beneficial when
upgrading/downgrading and maintaining clusters.

Aerospike shard As Aerospike partitions data automatically and distributes evenly across nodes, for the
purpose of this paper, one shard or horizontal partition in Aerospike is equivalent to an
instance or server. Learn more about Aerospike horizontal scaling.

LGS Load Generation Server, sometimes described as a VM running the client application but not
the database. See also SUT

SUT System Under Test. The database that is being tested. See also LGS

https://aerospike.com/compare/mongodb-vs-aerospike/#scalability_options

A document use case comparison: Aerospike vs. MongoDB Atlas 26

Appendix A: Test environments
The environment numbers relate to specific test configurations, in terms of hardware and software.

Load Generation Server (LGS) specification

Platform Google Cloud Platform (GCP)

Zone us-central1-a

LGS Instance type n2-highcpu-8

vCPU type Intel Cascade Lake CPU

vCPU count 8 per instance

Memory 8 GB per instance

Number of LGS
servers used

Forty (40)

A document use case comparison: Aerospike vs. MongoDB Atlas 27

Environment 1 specification: Aerospike
Aerospike’s best practice is to use NVMe locally attached storage, not network-attached mid-range drives that were used here.

The network-attached persistent SSD disks were selected to mimic MongoDB Atlas’s lack of NVMe capability on the
GCP platform.

Note: “safegaming” is the internal name for the Player Protection simulation.

Platform Google Cloud Platform (GCP)

Zone us-central1-a

Database Aerospike 7.0 Enterprise

Cluster size 5 nodes

Database
instance type

n2-highmem-32

vCPU type Intel Cascade Lake CPU

vCPU count per node 32

Memory per node 256 GB

Root volume per node pd-ssd:20

Data volume per node pd-ssd:1500
pd-ssd:1500
pd-ssd:1500
pd-ssd:1500

Aerospike
configuration

namespace safegaming {
 default-ttl 0
 index-stage-size 128M
 replication-factor 2
 sindex-stage-size 128M
 stop-writes-sys-memory-pct 90
 storage-engine device {
 device /dev/sdb
 device /dev/sdc
 device /dev/sdd
 device /dev/sde
 stop-writes-avail-pct 5
 stop-writes-used-pct 70
 write-block-size 1024K
 }
}

A document use case comparison: Aerospike vs. MongoDB Atlas 28

Figure 19: GCP Instance and Storage pricing for Aerospike.

A document use case comparison: Aerospike vs. MongoDB Atlas 29

Environment 2 specification: MongoDB Atlas sharded

Platform Google Cloud Platform (GCP)

Zone Iowa (us-central1)

Database MongoDB Atlas 7.08

Cluster size 18 servers total - made up as follows:

R200 cluster with five shards. ¹⁶

Each shard consists of one primary and two secondary servers, which is a total of 15 servers.

Plus

1 * M30 config server cluster consisting of 3 servers total, made up of one primary and two
secondary servers

Database
instance type

R200

vCPU type Not known

vCPU count 32 per cluster VM

Memory 256 GB per cluster VM

Storage 4096 GB per cluster VM

Other information 60,000 Total IOPS - up to 60,000 Read IOPS and 60,000 Write IOPS

Additional Info 128000 max connections

Extremely High network performance

¹⁶ Shard sizing per Testing Approach, Shards section.

A document use case comparison: Aerospike vs. MongoDB Atlas 30

Figure 20: MongoDB Atlas pricing for five shards.

A document use case comparison: Aerospike vs. MongoDB Atlas 31

Appendix B: What is the Player Protection Simulator?
The Player Protection Simulator was developed with one of Aerospike’s partners, Intuita, to showcase how Aerospike can be
used as a document data platform for real time intervention of risky online betting behaviors. Online gaming is experiencing
significant growth, and there is an increased burden on operators to demonstrate that they are capable of intervening
when players demonstrate unhealthy gambling behaviors. Failure to do so results in large fines for the operators of these
online casinos¹⁷.

The Player Protection Simulator creates a large number of simulated players from different FIPS 6-4 areas (USA counties or
county equivalents), simulates appropriate access patterns to casinos or similar establishments, and for each FIPS code uses
statistical models of income, spending habits, propensity to gamble, how much is spent per gamble (based on historical data for
that FIPS code) and uses the standard statistical rules and laws for percentage wins and losses per gamble per game (roulette,
blackjack, slots etc).

Note: Here is a video demo of the simulator itself.

Many player parameters were based on census data per FIPS area (age, profile, status, family size and makeup, loan and credit
status and value, etc.), and player behaviors were based on long-known empirical study observations. Some parameters were
randomized between appropriate minimum and maximum limits (how much initial ready cash a player has to gamble with
for example).

The tests were conducted using two applications, the Player Protection Simulator and the Player Protection Reader. These two
applications were run in parallel and were used to generate Read/Write/Update workloads with a breakdown as follows:

•	 Using the Simulator, as much throughput as possible with a split of 66% writes and 33% updates

•	 Using the Reader, a fixed 2000 transactions worth of user data per second.

Note: Between the two applications, the resultant Read/Write ratio was 20/80 R/W.

There are three main phases and three main termination situations.

Main phases:

•	 Create simulated players that match observed reality as closely as possible based on US census data.

•	 Each player has a portfolio based on their selected county. This portfolio contains demographic, economic, and social data
required for realistic play and interventions.

•	 Simulated game play can be one or more spins, pulls, wager, etc. on multiple games. The odds of winning/losing are the
actual odds for that game including payout amounts. Simulated play also takes into account the amount of time a play takes
(e.g., one spin on a slot machine) plus player breaks (e.g., getting a drink, restroom, etc.), player session time lengths, etc.

¹⁷ CA$ 150,000 penalty: https://www.agco.ca/blog/lottery-and-gaming/nov-2023/agco-issues-150000-penalties-pointsbet-violations-
internet-gaming.
European Union Gambling Commision Enforcement penalties, news thereof: https://www.gamblingcommission.gov.uk/news/enforcement-
action.
CA$ 100,000 penalty: https://www.agco.ca/blog/lottery-and-gaming/aug-2023/agco-issues-100000-penalties-apollo-entertainment-
violations.

https://aerospike.com/partners/intuita/
https://aerospike.com/resources/videos/player-protection-simulation/
https://www.agco.ca/en/news/agco-issues-150000-penalties-pointsbet-violations-internet-gaming-responsible-gambling
https://www.agco.ca/en/news/agco-issues-150000-penalties-pointsbet-violations-internet-gaming-responsible-gambling
https://www.gamblingcommission.gov.uk/news/enforcement-action
https://www.gamblingcommission.gov.uk/news/enforcement-action
https://www.agco.ca/en/news/agco-issues-100000-penalties-apollo-entertainment-violations-internet-gaming-responsible
https://www.agco.ca/en/news/agco-issues-100000-penalties-apollo-entertainment-violations-internet-gaming-responsible

A document use case comparison: Aerospike vs. MongoDB Atlas 32

Play termination:

•	 Player decided to stop playing. This is a simulation of reality; in many cases, players were casual and just gambled a little
money, some players won and decided to take their winnings, others were a little more serious and spent more, and some
stopped playing when they faced significant losses but were not yet in difficult financial positions and some players continue
to try to play to the detriment of their means, i.e. until they ran out of all money.

•	 In the last two scenarios, the simulator provides appropriate intervention triggers. The logic behind the intervention triggers
is more complicated than it may appear, as it is the combination of the pattern of behavior when considered together with
their financial position that is what matters.

•	 The key point here is that intervention triggers are provided in real time, so interventions can be made when it matters.

In summary, the simulation is as close to real-world behavior as possible, and the goal is to identify and intervene when a
gambling disorder is identified.

This all constitutes a significant amount of processing as the simulation is complex.

The simulation presents a high-velocity, complex series of data points that all have to be correctly logged so that the
provenance of each intervention decision can be fully traced.

The Player Protection Game Simulator code base and game logic were unchanged, i.e., identical when tested against Aerospike
and MongoDB.

The Player Protection Database
The data stored by the Game Simulator is complex and does not easily conform to a standard RDBMS style n normal form style
of formal schema.

The data is however well suited to any database that can store document type schemaless data such as
MongoDB or Aerospike.

With MongoDB, the data is stored in the native BSON form, a compressed binary JSON-like serialization format.

With Aerospike, the data is stored in the Aerospike Map Collection Data Type (“Map CDT”).

Each database was used to its strengths; no conversion of the data was required in the provided driver, nor were any
conversions needed at the database level.

Player Protection Parameter selection
The Player Protection Game Simulator allows for many parameters to be selected - most of these are related to histograms,
starting player id numbers (so that the load can be applied from multiple servers), debug flags, and so on.

The important parameters for our benchmark runs are :

-d, --MaxDegreeOfParallelism

-s, --start-key ; The value used to start counting the player id generation

-k, --keys [Default Value “100”] The number of players generated (NbrPlayers)

Each simulation was run with a setting of a value of approximately -k 50000 and -d 16 on each LGS.

https://docs.aerospike.com/server/guide/data-types/cdt-map

A document use case comparison: Aerospike vs. MongoDB Atlas 33

Approximate means that each run was a different number of keys to make sure there was no coordinated completion and start
of a new run at the same point in time as this could present itself as a noticeable drop in performance for a second or so while a
new simulation run was initiated. Both Aerospike and MongoDB used 40 LGS.

This meant that each LGS allowed up to 16 players to play at any one time, in parallel.

As each player completed their gaming session, another player took their place until a total of ~50,000 players had completed
their gaming sessions.

Each LGS ran the above multiple times with a different -s value (to avoid player ID conflicts) until the overall dataset reached the
target size of 10TB.

Each player has a session and they play a game or different games within that session. A session ends with the time limit for that
player has exceeded, if they hit a financial threshold (e.g., ran out of money, hit their limit, etc.) or had an intervention.

A player can have multiple sessions running while executing the application. Once the session has ended, a new player can
begin or a prior player may begin if they meet the time between sessions and have the ability to still play (good standing).

As each player is generated and plays games, a large number of database touches are generated as each game the player
plays is logged, along with the wager amount, win or loss amounts, time of game, type of game, and so on.

It should also be noted that the average time between gambles, roulette spins, bathroom breaks, time to get a drink or food, and
more are adjustable to match real-world gambling intervals. For the test, these intervals were made smaller so that the number
of database touches would be condensed in time.

For this evaluation and using the setting listed above, the Game Simulator issues writes/updates at an approximate split of
66% inserts and 33% updates. The average object size reported by MongoDB is 1324 bytes (which will be a similar size on
Aerospike). This size will vary a little over different runs. Aerospike uses 1 namespace containing 6 sets, MongoDB uses 1
database containing 6 collections, and all indexes are primary key indexes, no secondary indexes are used.

Reading records
When we introduce a new player, we set up a player record: name, address, socio-economic demographic information, etc.

Each player then plays a series of games according to some random chances and associations depending on their status and
various other factors (time of day, likelihood of that player with specific demographics and location would play specific games,
etc.). Also, after a win - which is determined using standard well-known gambling odds - a player gets more plays because their
risk is lowered at that point, meaning more records then get associated with that user.

So, the player and their associated records grow over time until they are deemed to be risky players (decided according to the
law of the region), at which point the Player Protection component of the simulation steps in to stop playing (with a warning first).

A read randomly picks a player and reads all their data, 2000 users per second, so the precise number of actual database
records read varies and is meant more of a load as a mixed workload rather than a load to be measured in precise throughput
and latency. In general, the read load was targeted at approximately 20% of the total load, with 80% being writes for each
database tested in this benchmark.

A document use case comparison: Aerospike vs. MongoDB Atlas 34

Appendix C: Typical document in a collection/set
The following is a GitHub link to an example of a “Current Player” document that would be stored in Aerospike as a record of
collection data types or in MongoDB as a BSON document. Six collections/sets are used in Player Protection, and both use
identical document data models.

The “Current Player” document encompasses a player’s current state, which consists of multi-level nested documents. Below is
the player document model. (Note: As the player data structure is quite sizable, please feel free to access sample customer data
via the intended Github link)

The takeaway is that this is a reasonably complex document of a reasonable size. It is not a one-line non-nested simplistic JSON
document just to get as many of those through to a database as possible in as short a time as possible.

In this example document, all names, characters, and gambling-related information as portrayed are fictitious. No identification
with actual persons (living or deceased), places, buildings, products, amounts, or games is intended, nor should it be inferred.

Figure 21: Example document.

https://github.com/aerospike-community/safegaming

©2024 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike logo are trademarks or registered trademarks of Aerospike. All other
names and trademarks are for identification purposes and are the property of their respective owners.

2440 W. El Camino Real, Suite 100, Mountain View, CA 94040 | (408) 462-2376 | aerospike.com

About the author

Phil Allsopp
Phil is a Principal Performance & Reliability Engineer at Aerospike. He has also worked as a Principal Global Solutions
Architect for one of the largest Postgres vendors. Prior to this, Phil had designed and developed a number of flight
simulators, and numerous e-commerce systems for a large proportion of the worldwide music industry, as well as for some
of the world’s largest charities. All of these different projects/products brought theoretical and real-world performance and
reliability challenges.

https://aerospike.com/

	Executive summary
	Considerations
	Testing approach
	Infrastructure
	Shards (Horizontal partitions)
	Test clusters

	Data consistency and guarantees
	Aerospike⁵
	MongoDB⁶

	Performance results
	Throughput graphs
	Latency graphs

	Resilience: Failure of a node, process, and diagnosis
	Aerospike failure testing
	Aerospike takeaways
	MongoDB Atlas failure testing
	MongoDB takeaways
	Total cost of ownership

	Conclusions
	Afterword
	Objection handling
	Business impact of database reconfiguration
	External maintenance tasks
	An operations perspective

	Glossary
	Appendix A: Test environments
	Load Generation Server (LGS) specification
	Environment 1 specification: Aerospike
	Environment 2 specification: MongoDB Atlas sharded

	Appendix B: What is the Player Protection Simulator?
	The Player Protection Database
	Player Protection Parameter selection
	Reading records

	Appendix C: Typical document in a collection/set
	About the author

