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Introduction to graph databases
Graph databases have emerged as a powerful tool for handling complex, interconnected data for a variety of use cases. The 
value of graph databases is that the relationships between data points (or edges) are as useful and valuable as the data points 
(or vertices) themselves. Given their ability to query, traverse, and process “connected data,” graph databases are especially 
well-suited for use cases involving identity resolution, network analysis, recommendation engines, customer 360, fraud detec-
tion, and more. 

While first-generation graph database implementations were largely about data visualization and discovery, the role of graph 
databases has expanded to include data modeling and transactional systems. More recently, artificial intelligence (AI) and 
machine learning (ML) teams and graph vendors are exploring the role graph databases can and will play in  
AI/ML data pipelines.

There are many factors to consider when choosing a graph database. 

Scale: What is the expected scale and throughput of your data? Will you measure it in gigabytes, terabytes, or hundreds of 
terabytes as well as transactions per second? The graph database you choose must be suited to the scope and performance of 
your data and ready for unexpected spikes of activity.

Static vs. dynamic data: Are your datasets relatively static over time, or are they dynamic and changeable? Some graph data-
base use cases are analytical in nature while other use cases are more transactional – with frequent reads, writes, updates, and 
deletes – where transaction throughput, query latencies, uptime, and other operational factors must be considered.

Cost: Are your graph database and data infrastructure costs predictable as data volumes, transaction throughput, and the 
number of concurrent users rise over time? Graph databases that rely on all data being in memory may not scale linearly –  
in terms of performance and cost - especially as the size of datasets approaches the amount of available memory.

Analytical vs. transactional graph use cases
There is an increasing distinction between using graph databases for analytical purposes (graph OLAP) and those for transac-
tional or operational purposes (graph OLTP ). Let’s examine the differences between these two categories.

Graph OLAP
Online analytical processing (OLAP) is typically used to perform multi-
dimensional data analysis, deriving meaning through calculations and 
visualizations of aggregated historical data. Because of the nature of 
analytics, OLAP applications may take longer to finish complex queries 
on highly connected datasets. 

Graph databases can deliver acceptable response times by keeping the 
entire graph dataset in memory. However, this approach can limit the 
size of the datasets and the scalability of the application.

Graph OLAP use cases often focus on interactive analysis or exploration 
by analysts where the query latency can be within a few seconds or 
minutes. There is usually a visualization component to these use cases 
that can be useful for data science and business intelligence (BI) teams. 

OLTP
vs.

OLAP
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Data volumes can range from hundreds of gigabytes to terabytes. Analytical graph datasets often follow the pattern of tradi-
tional OLAP in that datasets are fairly static and updated periodically (daily or weekly). 

Traditional graph OLAP use cases often rely on the memory space of a single server or workstation to deliver acceptable 
response times for analysts and, therefore, rely on scale-up strategies (e.g., adding more memory and CPU). However, as data 
volumes grow or the number of concurrent users expands, customers often find that a distributed, scale-out approach  
is required.

Here are some examples of analytical (OLAP)  graph use cases.

Interactive analysis of buyer behavior: Graph OLAP databases allow real-time exploration of buyer patterns, related book 
purchases, and author connections. Examples: Analyzing book sales and average prices and identifying key opinion leaders.

Pricing analysis: Graph OLAP databases facilitate pricing analysis by considering relationships between products, competitors, 
and market trends. Examples: Optimizing pricing strategies, competitive analysis, and dynamic pricing.

PageRank algorithm for key opinion leaders: Graph OLAP databases identify influential nodes (e.g., opinion leaders,  
influencers) using algorithms like PageRank. Examples: Finding influential users, recommending content, and enhancing 
marketing strategies.

Graph OLTP
Online transaction processing (OLTP) use cases are often characterized by high volumes of short transactions and fast query 
processing. OLTP is typically used for data ingest and retrieval in transaction-oriented applications. A real-time operations 
graph platform serves use cases where the graph query results are needed in under a second or even a few milliseconds. They 
may serve thousands or even millions of concurrent users or devices. For example, graph OLTP use cases like identity graphs in 
AdTech and online fraud detection in banking require sub-10 millisecond response times.  

Graph OLTP requires both a scale-up (vertical) and scale-out (horizontal) architecture using industry-standard server clusters or 
clustered cloud instances. Data volumes are easily in the tens to hundreds of terabytes. Throughput requirements - with reads 
and writes - might be in the tens of thousands to hundreds of thousands of transactions per second. 

Here are some examples of transactional/operational (OLTP) graph use cases.

Identity graphs: Identity graphs are used in ad tech in response to the impending loss of third-party browser cookies, which 
complicates identity resolution. Instead, large amounts of relevant data is used to build and train a machine learning model that 
is then used to create an identity graph.

Recommendation engines in e-commerce: Graph databases power personalized product recommendations by analyzing 
user behavior, preferences, and connections. Examples include LinkedIn, Amazon, and Wish.com.

Real-time fraud detection: Graphs reveal hidden relationships and patterns in transaction data, aiding fraud detection.  
Examples: Identifying suspicious connections, money laundering, and engaging in payment or credit card fraud. 

Knowledge graphs, AI/ML, and graph RAG
Knowledge graphs are an increasingly popular means of deploying graph technology in the enterprise and have growing 
applicability in AI/ML data pipelines. The explosive growth and interest in generative AI (GenAI) and related ML programs have 
focused some attention on the role of graph databases in AI. Graph databases can serve several functions in an AI/ML data 
pipeline. Graph databases can help model different entities (users, customers, households), feed data to train ML models, and 
provide graph algorithms to ML use cases (PageRank, similarity matching, community detection). 

Graph databases also have a role to play with large language models (LLMs) and retrieval augmented generation (RAG) which 
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can improve LLM accuracy with more context. This is becoming known as Graph RAG and functions as an extension of knowl-
edge graphs. This dimension of graph databases is growing and evolving rapidly, so a full treatment of this topic is beyond the 
scope of this paper.

Criteria for choosing a graph database
The functional criteria for evaluating graph databases vary depending on the use case, data volumes, and business needs. 
However, as the market matures, the top criteria for operationalizing graph databases in enterprise computing environments 
become clearer.

Performance and scalability
Achieving performance at scale with graph data is a tricky problem that requires strong consideration. With datasets under  
500 gigabytes, most graph databases can deliver acceptable performance. Achieving optimum performance becomes an 
exercise in optimizing queries and using available product features (indexes, caching, tunable parameters, etc.) to improve 
response time.

Achieving adequate performance for operational use cases such as identity graphs, fraud detection, and mass personalization 
- where data volumes of multiple terabytes or more are becoming increasingly common - is a more intractable problem. 

Look for a graph database designed from the ground up for extreme scale. It should have a distributed architecture, scale-up 
and scale-out capabilities, high-performance storage options, separate scaling for compute and storage, and advanced index/
secondary index features.

Developer friendliness, community, and documentation
The degree to which each solution facilitates application development is a function of its engine and API, data model, and query 
language. Being easy to work with is hard to quantify, but most of the leading graph databases have powerful graph query 
languages (Cypher, Gremlin, GSQL, GQL) that give developers the tools they need to build great graph applications.

User communities offer support and access to resources, answer questions, and share knowledge and best practices, while 
the quality and quantity of documentation are important for onboarding and retaining users.

Total cost of ownership
The total cost of ownership (TCO) of a graph application involves the license and infrastructure cost, which can vary widely 
between vendors and run-time requirements. Technical debt and the cost of scaling can also be a consideration. If you go down 
the path with a single vendor, do you have a plan for when your data volumes double or grow exponentially? You must factor 
into your calculations the possibility of steady increases in data and transaction volumes and the potential for unexpected levels 
of success and scale.

Batch/streaming data import/export
Graph databases routinely need to import data from other systems in formats that are not graph-native, which means data must 
be extracted, transformed, and loaded (ETL) and then imported en masse. Even for graph data, importing in batches is essen-
tial, as it saves effort and ensures a streamlined and repeatable process. Reliability and options for logging and resuming when 
errors occur during the process are key.
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Analytics
Graph algorithms used for analytics, like the PageRank algorithm, traverse paths in a graph to evaluate node properties and 
extract metrics. This provides an advantage over graph processing frameworks external to the database. Vendors that offer 
graph algorithms out of the box (or through github, developer sites, etc.) can help save time and effort.

Visual exploration
Visual interfaces can enable ad hoc discovery by picking a starting point of interest and following connections. They also drive 
intentional exploration of a specific subset of a graph retrieved via graph queries or analytics. Navigating and exploring large 
graphs can be daunting, so visual exploration is part and parcel of many graph databases.

IDE and query language support
Integrated development environments (IDEs) are a huge factor in developer productivity. At the very minimum, graph databases 
should support popular IDEs via connectors, plugins, and libraries. Some graph databases incorporate their own custom IDEs, 
signifying an investment in onboarding users to produce graph-based applications.

Operational agility
Support for multiple environments, both on-premises and in the cloud, is a requirement for modern databases. This includes 
support for on-premises deployment on bare metal, virtual machines, or containers. Cloud deployments require capabilities 
ranging from user-managed container or virtual machine images to turnkey database-as-a-service (DBaaS) solutions that 
integrate with cloud vendors’ core and extended services.

For larger-scale distributed deployments, you must consider how quickly and easily you can scale data, indexes, transactions, 
concurrent users, and network resources. Can you easily scale up and out? Can you easily add nodes and redistribute data? 
How readily can you replicate data to different locations and availability zones?

Multi-model vs. native graph databases
Often, the tradeoff between having one specialized database per application and managing those databases will tip the scale in 
favor of simplicity and reduced TCO. This becomes even more pronounced in times of economic downturn when organizations 
are looking to do more with less. That’s why more organizations are turning to multi-model, multi-capable databases that can 
effectively and efficiently deal with different scenarios. 

The native advantage

Native graph databases are explicitly designed to handle graph data structures efficiently. They excel in traversing relationships, 
making them the preferred choice for applications where relationship-centric queries are the primary focus. An example of this 
might be a social graph where you are connecting different users together and need to follow relationships like location, buying 
preferences, and demographic information. With optimized storage and querying mechanisms, native graph databases offer 
blazingly fast performance for specific use cases. 

One of the key features contributing to this speed is index-free adjacency. In native graph databases, relationships between 
vertices are stored directly as pointers, allowing rapid traversal. When you need to move from one node to another, the database 
engine can do so with minimal disk I/O because it knows the exact location of related nodes. This index-free adjacency ensures 
near-instantaneous access to connected nodes and is a cornerstone of native graph database performance. This advantage 
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can be negated as datasets grow beyond the capacity of a single machine, or when running in distributed environments. Some 
vendors provide different techniques to better scale graph databases across multiple machines.

The versatility of multi-model

Multi-model databases are chosen for their versatility. These databases support multiple data models within a single platform, 
accommodating a wide range of data types, including graph, document, key-value, vector, and more. 

Multi-model databases are designed to handle the high demands of operational workloads, providing the necessary real-time 
transactional capabilities for applications with thousands or even millions of concurrent users, far surpassing traditional graph 
databases focused on static data sets.

One common assumption is that native graph databases inherently provide superior performance. While this can be true for 
certain query patterns, multi-model databases have made significant strides in improving their graph capabilities. Modern multi-
model databases often incorporate efficient graph processing engines, making them competitive in terms of performance.

Checklist for choosing an OLTP graph database
	✔ When evaluating graph databases for transactional use cases, make sure you consider the following criteria to determine if 

your graph database vendor solution can withstand the rigors of highly dynamic, mission-critical environments:

	✔ Does the solution provide customizable high-performance query APIs?

	✔ Can it deliver sub-second query latencies and optimizations to ensure those latencies for both single-hop and multi-hop 
queries?

	✔ Can it deliver second-level data freshness (i.e., near real-time update)?

	✔ Does your platform provide horizontal scaling with fault tolerance on terabytes of data?

	✔ Can it scale storage and/or compute resources independently?

	✔ Can your platform deliver sufficient throughput headroom (e.g., 1 million QPS [query per second])?

	✔ Does it provide flexible data backfill from offline to online?

	✔ Is it compliant with enterprise data security and privacy requirements?
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Vendor comparison

Disclaimer
The following comparison is based on a high-level analysis of each of the leading vendors. This comparison uses input from 
publicly available information from the vendors themselves, feedback from customers and partners, and our experts. We have 
endeavored to be objective and fair in these appraisals. Each vendor mentioned offers strong, successful graph databases. 
Readers are advised to do their own research in their search for the ideal graph database for their needs. If you wish for addi-
tional information or clarification on any of the information within this buyer’s guide, please contact us at [info@aerospike.com].

Neo4j
Neo4j is a pioneer of graph databases and graph use cases.  Many organizations have adopted it to support increasing interest 
in exploring the power of connected data. With an early focus on graph analytics and visualization, Neo4j is among the stron-
gest vendors for graph OLAP use cases. Neo4j was designed as a single-instance, in-memory database, which presents some 
challenges with scalability as data volumes grow or in transactional environments.

Deployed: On-prem, cloud (Neo4j Aura)

Query language: Cypher

Data model: Graph only

Use case focus: OLAP/analytics, visualization

Support: Neo4j support
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Aerospike
Aerospike is a multi-model real-time database supporting key-value, document, vector, and spatial and graph data models. 
Aerospike delivers high transaction volumes at extremely low latencies on datasets ranging from gigabytes to petabytes. 
Aerospike Graph was introduced in 2023 to target the gap left by other graph vendors in the graph OLTP space. Aerospike 
can deliver transactions in a few milliseconds, even in multi-hop graph queries, and is unique in that it scales computing (graph 
queries and processing) with storage (real-time database).

Deployed: On-prem, cloud

Query language: Gremlin

Data model: Key-value, document, graph, vector 

Use case focus: OLTP (OLAP Q4 2024)

Support: Aerospike support
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TigerGraph
TigerGraph was designed as a distributed multi-purpose graph database. It can be used in both OLTP and OLAP use cases. 
TigerGraph’s architecture is horizontally scalable, allowing it to handle massive graphs with hundreds of billions of entities and 
up to one trillion relationships. Its parallel query execution ensures efficient exploration of stored data. The system integrates 
a graph storage engine (GSE) for physical storage and compression, along with a graph processing engine (GPE) for parallel 
processing and scalability.

Deployed: On-prem, cloud (TigerGraph Cloud), hybrid cloud

Query language: GSQL

Data model: Graph only

Use case focus: OLTP and OLAP

Support: TigerGraph support
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Amazon Neptune
Amazon Neptune is a fully managed graph database service. Its core is a purpose-built, high-performance graph database 
engine optimized to store billions of relationships and query the graph with milliseconds latency. 

Amazon Neptune supports popular property-graph query languages like Apache TinkerPop’s Gremlin, Neo4j’s openCypher, 
and the W3C’s RDF query language, SPARQL. This enables efficient navigation of highly connected datasets. 

Deployed: Cloud only (AWS)

Query language: GSQL

Data model: Graph only

Use case focus: OLTP and OLAP

Support: AWS support + community
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Consolidated vendor comparison

Conclusion
Graph databases have been in active use for over a decade, focusing on analytical use cases, data visualization, and data 
discovery functions. With the continuing growth of cloud computing, distributed databases, and now AI/ML, the role of graph 
databases has evolved to include more operational workloads. These workloads introduce greater requirements on graph 
databases, including scaling to terabytes, low-latency transactions, high data throughput, enterprise-grade availability, and 
disaster recovery. 

With the buying guidelines we have laid out in this document, you should be able to make a better-informed decision about 
which approach to graph databases best fits your particular requirements.
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Appendix I: Graph terms and concepts
Since graph data is its own data model, it has its own set of terms and concepts. Here are the main ones.

Vertex/vertices/nodes: An element in a graph representing an entity or a data point. Vertices can be anything—people, 
accounts, locations, etc. Each vertex has a unique identifier.

Edge/relationship: A connection between vertices representing a relationship or connection. Edges define how nodes are 
related to each other.

Label: An identifier for a vertex type that distinguishes it from other vertex types in the graph. For example,  “person,”  “house-
hold,”  “device,” etc. 

Property: Describes attributes of nodes and edges. Properties provide additional information about the data stored in the 
graph.

Traversal: The process of navigating the graph to retrieve or modify data.

Graph query language: A language used to specify queries and commands for interacting with a graph database

Graph OLAP: A category of analytical graph use cases that reflect traditional Online Analytical Processing (OLAP), which is 
characteristic of traditional business intelligence. In graph OLAP, data sets are relatively static.

Graph OLTP: A category of transactional graph use cases that reflect traditional Online Transaction Processing (OLTP) in their 
need for frequent updates to datasets and transactional integrity. These use cases are often operational in nature and interact 
with other enterprise systems (fraud detection, identity resolution, personalization).

Appendix II: Graph query languages
A graph query language is a specialized programming language designed to work with graph databases. Graph query 
languages allow users to specify how they want to interact with graph data. They define the structure of the graph they want to 
query and the rules for traversing the graph and retrieving relevant information. When you use a graph query language, you can 
express queries that retrieve specific patterns from the graph. 

Gremlin 
Gremlin is the graph traversal language of Apache TinkerPop. Gremlin is a functional, data-flow language that enables users 
to succinctly express complex traversals on their application’s graph. This is the Gremlin way of expressing graph queries and 
implementing graph algorithms. Every Gremlin traversal is composed of a sequence of (potentially nested) steps. 

Gremlin is supported by Aerospike, JanusGraph, Datastax, and Amazon Neptune.

Cypher and openCypher
Cypher is a declarative graph query language designed for expressive and efficient data querying in a property graph. Initially 
intended for use with the graph database Neo4j, it was later opened up through the openCypher project. Cypher is graph- 
optimized and understands data connections. It follows connections in any direction to reveal previously unknown relationships 
and clusters.

Cypher is supported by Neo4j/AruaDB, Amazon Neptune, and AnzoGraph.
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GraphQL 
GraphQL is a developer-friendly query language for APIs that has gained widespread adoption. GraphQL excels at fetching 
data from various sources, bundling it together, and returning it to clients. Developers like GraphQL (short for Graph Query 
Language) because it simplifies making simultaneous requests to multiple data sources.

GraphQL is supported by MongoDB, Yugabyte, ArangoDB, OrientDB, and relational databases through connectors.

GSQL 
GSQL is a proprietary graph query language designed for expressing graph operations and analytics. Developed by  
TigerGraph, GSQL provides a high-level syntax similar to SQL while supporting a MapReduce interpretation. It is  
schema-based, optimized for storage efficiency and query speed, and offers built-in parallelism for efficient  
algorithm execution.

GSQL is unique to TigerGraph. 

About Aerospike 
Aerospike is the real-time database built for infinite scale, speed, and savings. Our customers are ready for what’s next with the 
lowest latency and the highest throughput data platform. Cloud and AI-forward, we empower leading organizations like Adobe, 
Airtel, Criteo, DBS Bank, Experian, PayPal, Snap, and Sony Interactive Entertainment. Headquartered in Mountain View,  
California, our offices include London, Bangalore, and Tel Aviv.

For more information, please visit https://www.aerospike.com.

©2024 Aerospike, Inc. All rights reserved. Aerospike and the Aerospike logo are trademarks or registered trademarks of Aerospike. All other 
names and trademarks are for identification purposes and are the property of their respective owners.

2440 W. El Camino Real, Suite 100, Mountain View, CA 94040 | (408) 462-2376 | aerospike.com

https://aerospike.com/?utm_source=aws-graviton-wp&utm_medium=collateral
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