Wednesday, October 25, 2023, 2:00 PM to 3:00 PM JST
Handling data has become increasingly important due to the recent development of AI. How can large amounts of data be stored and utilized instantly without omission? And how can you prevent data loss in case of unexpected situations?
In this seminar, we will introduce solutions that meet these demands at a high level and optimize overall costs. In addition to demonstrations of recovery and scale-up in the event of a failure, we will clearly explain the differences between NoSQL, RDB, and data lakes, which are often compared.
This solution has been widely adopted by telecommunications carriers and financial institutions around the world, including PayPal and Adobe in the US, and is used for Internet advertising and fraud detection that require real-time data processing, as well as IoT and AI/ML that process large amounts of data. A must-see for those who are concerned about this.
近年のAIの発展によりますます重要になっているデータの取り扱い。いかに大容量のデータを漏れなく即時に保存・活用するか? そして不測の事態に備えてどのようにデータの紛失を防ぐのか?
本セミナーではこれらの要求に高次元で答え、かつ全体のコストを最適化するソリューションをご紹介します。障害発生時の復旧やスケールアップのデモに加え、よく比較される NoSQL やRDB、データレイクとの違いもわかりやすくご説明します。
このソリューションは米国PayPalやAdobeをはじめ、全世界の通信業者や金融機関などに広く採用されており、リアルタイムのデータ処理が求められるネット広告や不正検知、大量のデータを処理するIoTやAI/ML でお悩みの方、必見です。