Model Training with Aerospike Feature Store
For an interactive Jupyter notebook experience:
This notebook is the second in the series of notebooks that show how Aerospike can be used as a feature store.
This notebook requires the Aerospike Database and Spark running locally with the Aerospike Spark Connector. To create a Docker container that satisfies the requirements and holds a copy of Aerospike notebooks, visit the Aerospike Notebooks Repo.
Introduction
This notebook shows how Aerospike can be used as a Feature Store for Machine Learning applications on Spark using Aerospike Spark Connector. It is Part 2 of the Feature Store series of notebooks, and focuses on Model Training aspects concerning a Feature Store. The first notebook in the series discusses Feature Engineering, and the next one describes Model Serving.
This notebook is organized as follows:
- Summary of the prior (Data Engineering) notebook
- Exploring features and datasets
- Defining and saving a dataset
- Training and saving an AI/ML model
Prerequisites
This tutorial assumes familiarity with the following topics:
Setup
Set up Aerospike Server. Spark Server, and Spark Connector.
Ensure Database Is Running
This notebook requires that Aerospike database is running.
!asd >& /dev/null
!pgrep -x asd >/dev/null && echo "Aerospike database is running!" || echo "**Aerospike database is not running!**"
Output:
Aerospike database is running!
Initialize Spark
We will be using Spark functionality in this notebook.
Initialize Paths and Env Variables
# directory where spark notebook requisites are installed
#SPARK_NB_DIR = '/home/jovyan/notebooks/spark'
SPARK_NB_DIR = '/opt/spark-nb'
SPARK_HOME = SPARK_NB_DIR + '/spark-3.0.3-bin-hadoop3.2'
# IP Address or DNS name for one host in your Aerospike cluster
AS_HOST ="localhost"
# Name of one of your namespaces. Type 'show namespaces' at the aql prompt if you are not sure
AS_NAMESPACE = "test"
AEROSPIKE_SPARK_JAR_VERSION="3.2.0"
AS_PORT = 3000 # Usually 3000, but change here if not
AS_CONNECTION_STRING = AS_HOST + ":"+ str(AS_PORT)
# Next we locate the Spark installation - this will be found using the SPARK_HOME environment variable that you will have set
import findspark
findspark.init(SPARK_HOME)
# Aerospike Spark Connector related settings
import os
AEROSPIKE_JAR_PATH= "aerospike-spark-assembly-"+AEROSPIKE_SPARK_JAR_VERSION+".jar"
os.environ["PYSPARK_SUBMIT_ARGS"] = '--jars ' + SPARK_NB_DIR + '/' + AEROSPIKE_JAR_PATH + ' pyspark-shell'
Configure Spark Session
Please visit Configuring Aerospike Connect for Spark for more information about the properties used on this page.
# imports
import pyspark
from pyspark.context import SparkContext
from pyspark.sql.context import SQLContext
from pyspark.sql.session import SparkSession
from pyspark.sql.types import StringType, StructField, StructType, ArrayType, IntegerType, MapType, LongType, DoubleType
sc = SparkContext.getOrCreate()
conf=sc._conf.setAll([("aerospike.namespace",AS_NAMESPACE),("aerospike.seedhost",AS_CONNECTION_STRING)])
sc.stop()
sc = pyspark.SparkContext(conf=conf)
spark = SparkSession(sc)
sqlContext = SQLContext(sc)
Access Shell Commands
You may execute shell commands including Aerospike tools like aql and asadm in the terminal tab throughout this tutorial. Open a terminal tab by selecting File->Open from the notebook menu, and then New->Terminal.
Context from Part 1 (Feature Engineering Notebook)
In the previous notebook in the Feature Store series, we showed how features engineered using the Spark platform can be efficiently stored in Aerospike feature store. We implemented a simple example feature store interface that leverages the Aerospike Spark connector capabilities for this purpose. We implemented a simple object model to save and query features, and illustrated its use with two examples.
You are encouraged to review the Feature Engineering notebook as we will use the same object model, implementation (with some extensions), and data in this notebook.
The code from Part 1 is replicated below as we will be using it later.
Code: Feature Group, Feature, and Entity
Below, we have copied over the code for Feature Group, Feature, and Entity classes for use in the following sections. Please review the object model described in the Feature Engineering notebook.
import copy
# Feature Group
class FeatureGroup:
schema = StructType([StructField("name", StringType(), False),
StructField("description", StringType(), True),
StructField("source", StringType(), True),
StructField("attrs", MapType(StringType(), StringType()), True),
StructField("tags", ArrayType(StringType()), True)])
def __init__(self, name, description, source, attrs, tags):
self.name = name
self.description = description
self.source = source
self.attrs = attrs
self.tags = tags
return
def __str__(self):
return str(self.__class__) + ": " + str(self.__dict__)
def save(self):
inputBuf = [(self.name, self.description, self.source, self.attrs, self.tags)]
inputRDD = spark.sparkContext.parallelize(inputBuf)
inputDF = spark.createDataFrame(inputRDD, FeatureGroup.schema)
#Write the data frame to Aerospike, the name field is used as the primary key
inputDF.write \
.mode('overwrite') \
.format("aerospike") \
.option("aerospike.writeset", "fg-metadata")\
.option("aerospike.updateByKey", "name") \
.save()
return
def load(name):
fg = None
schema = copy.deepcopy(FeatureGroup.schema)
schema.add("__key", StringType(), False)
fgdf = spark.read \
.format("aerospike") \
.option("aerospike.set", "fg-metadata") \
.schema(schema) \
.load().where("__key = \"" + name + "\"")
if fgdf.count() > 0:
fgtuple = fgdf.collect()[0]
fg = FeatureGroup(*fgtuple[:-1])
return fg
def query(predicate): #returns a dataframe
fg_df = spark.read \
.format("aerospike") \
.schema(FeatureGroup.schema) \
.option("aerospike.set", "fg-metadata") \
.load().where(predicate)
return fg_df
# Feature
class Feature:
schema = StructType([StructField("fid", StringType(), False),
StructField("fgname", StringType(), False),
StructField("name", StringType(), False),
StructField("type", StringType(), False),
StructField("description", StringType(), True),
StructField("attrs", MapType(StringType(), StringType()), True),
StructField("tags", ArrayType(StringType()), True)])
def __init__(self, fgname, name, ftype, description, attrs, tags):
self.fid = fgname + '_' + name
self.fgname = fgname
self.name = name
self.ftype = ftype
self.description = description
self.attrs = attrs
self.tags = tags
return
def __str__(self):
return str(self.__class__) + ": " + str(self.__dict__)
def save(self):
inputBuf = [(self.fid, self.fgname, self.name, self.ftype, self.description, self.attrs, self.tags)]
inputRDD = spark.sparkContext.parallelize(inputBuf)
inputDF = spark.createDataFrame(inputRDD, Feature.schema)
# Write the data frame to Aerospike, the fid field is used as the primary key
inputDF.write \
.mode('overwrite') \
.format("aerospike") \
.option("aerospike.writeset", "feature-metadata")\
.option("aerospike.updateByKey", "fid") \
.save()
return
def load(fgname, name):
f = None
schema = copy.deepcopy(Feature.schema)
schema.add("__key", StringType(), False)
f_df = spark.read \
.format("aerospike") \
.schema(schema) \
.option("aerospike.set", "feature-metadata") \
.load().where("__key = \"" + fgname+'_'+name + "\"")
if f_df.count() > 0:
f_tuple = f_df.collect()[0]
f = Feature(*f_tuple[1:-1])
return f
def query(predicate, pushdown_expr=None): #returns a dataframe
f_df = spark.read \
.format("aerospike") \
.schema(Feature.schema) \
.option("aerospike.set", "feature-metadata")
# see the section on pushdown expressions
if pushdown_expr:
f_df = f_df.option("aerospike.pushdown.expressions", pushdown_expr) \
.load()
else:
f_df = f_df.load().where(predicate)
return f_df
# Entity
class Entity:
def __init__(self, etype, record, id_col):
# record is an array of triples (name, type, value)
self.etype = etype
self.record = record
self.id_col = id_col
return
def __str__(self):
return str(self.__class__) + ": " + str(self.__dict__)
def get_schema(record):
schema = StructType()
for f in record:
schema.add(f[0], f[1], True)
return schema
def get_id_type(schema, id_col):
return schema[id_col].dataType.typeName()
def save(self, schema):
fvalues = [f[2] for f in self.record]
inputBuf = [tuple(fvalues)]
inputRDD = spark.sparkContext.parallelize(inputBuf)
inputDF = spark.createDataFrame(inputRDD, schema)
#Write the data frame to Aerospike, the id_col field is used as the primary key
inputDF.write \
.mode('overwrite') \
.format("aerospike") \
.option("aerospike.writeset", self.etype+'-features')\
.option("aerospike.updateByKey", self.id_col) \
.save()
return
def load(etype, eid, schema, id_col):
ent = None
schema = copy.deepcopy(schema)
schema.add("__key", StringType(), False)
ent_df = spark.read \
.format("aerospike") \
.schema(schema) \
.option("aerospike.set", etype+'-features') \
.load().where("__key = \"" + eid + "\"")
if ent_df.count() > 0:
ent_tuple = ent_df.collect()[0]
record = [(schema[i].name, schema[i].dataType.typeName(), fv) for i, fv in enumerate(ent_tuple[:-1])]
ent = Entity(etype, record, id_col)
return ent
def saveDF(df, etype, id_col): # save a dataframe
# df: dataframe consisting of entiry records
# etype: entity type (such as user or sensor)
# id_col: column name that holds the primary key
#Write the data frame to Aerospike, the column in id_col is used as the key bin
df.write \
.mode('overwrite') \
.format("aerospike") \
.option("aerospike.writeset", etype+'-features')\
.option("aerospike.updateByKey", id_col) \
.save()
return
def query(etype, predicate, schema, id_col): #returns a dataframe
ent_df = spark.read \
.format("aerospike") \
.schema(schema) \
.option("aerospike.set", etype+'-features') \
.load().where(predicate)
return ent_df
def get_feature_vector(etype, eid, feature_list): # elements in feature_list are in "fgname_name" form
# deferred to Model Serving tutorial
pass
# clear the database by truncating the namespace test
!aql -c "truncate test"
Output:
truncate test
OK
Create set indexes on all sets.
!asinfo -v "set-config:context=namespace;id=test;set=fg-metadata;enable-index=true"
!asinfo -v "set-config:context=namespace;id=test;set=feature-metadata;enable-index=true"
!asinfo -v "set-config:context=namespace;id=test;set=dataset-metadata;enable-index=true"
#!asinfo -v "set-config:context=namespace;id=test;set=cctxn-features;enable-index=true"
Output:
ok
ok
ok
# test feature group
# test save and load
# save
fg1 = FeatureGroup("fg_name1", "fg_desc1", "fg_source1", {"etype":"etype1", "key":"feature1"}, ["tag1", "tag2"])
fg1.save()
# load
fg2 = FeatureGroup.load("fg_name1")
print("Feature group with name fg_name1:")
print(fg2, '\n')
# test query
fg2 = FeatureGroup("fg_name2", "fg_desc2", "fg_source2", {"etype":"etype1", "key":"fname1"}, ["tag1", "tag3"])
fg2.save()
fg3 = FeatureGroup("fg_name3", "fg_desc3", "fg_source3", {"etype":"etype2", "key":"fname3"}, ["tag4", "tag5"])
fg3.save()
# query 1
print("Feature groups with a description containing 'desc':")
fg_df = FeatureGroup.query("description like '%desc%'")
fg_df.show()
# query 2
print("Feature groups with the source 'fg_source2':")
fg_df = FeatureGroup.query("source = 'fg_source2'")
fg_df.show()
# query 3
print("Feature groups with the attribute 'etype'='etype2':")
fg_df = FeatureGroup.query("attrs.etype = 'etype2'")
fg_df.show()
# query 4
print("Feature groups with a tag 'tag1':")
fg_df = FeatureGroup.query("array_contains(tags, 'tag1')")
fg_df.show()
Output:
Feature group with name fg_name1:
<class '__main__.FeatureGroup'>: {'name': 'fg_name1', 'description': 'fg_desc1', 'source': 'fg_source1', 'attrs': {'etype': 'etype1', 'key': 'feature1'}, 'tags': ['tag1', 'tag2']}
Feature groups with a description containing 'desc':
+--------+-----------+----------+--------------------+------------+
| name|description| source| attrs| tags|
+--------+-----------+----------+--------------------+------------+
|fg_name2| fg_desc2|fg_source2|[etype -> etype1,...|[tag1, tag3]|
|fg_name3| fg_desc3|fg_source3|[etype -> etype2,...|[tag4, tag5]|
|fg_name1| fg_desc1|fg_source1|[etype -> etype1,...|[tag1, tag2]|
+--------+-----------+----------+--------------------+------------+
Feature groups with the source 'fg_source2':
+--------+-----------+----------+--------------------+------------+
| name|description| source| attrs| tags|
+--------+-----------+----------+--------------------+------------+
|fg_name2| fg_desc2|fg_source2|[etype -> etype1,...|[tag1, tag3]|
+--------+-----------+----------+--------------------+------------+
Feature groups with the attribute 'etype'='etype2':
+--------+-----------+----------+--------------------+------------+
| name|description| source| attrs| tags|
+--------+-----------+----------+--------------------+------------+
|fg_name3| fg_desc3|fg_source3|[etype -> etype2,...|[tag4, tag5]|
+--------+-----------+----------+--------------------+------------+
Feature groups with a tag 'tag1':
+--------+-----------+----------+--------------------+------------+
| name|description| source| attrs| tags|
+--------+-----------+----------+--------------------+------------+
|fg_name2| fg_desc2|fg_source2|[etype -> etype1,...|[tag1, tag3]|
|fg_name1| fg_desc1|fg_source1|[etype -> etype1,...|[tag1, tag2]|
+--------+-----------+----------+--------------------+------------+
# test feature
# test save and load
# save
feature1 = Feature("fgname1", "f_name1", "integer", "f_desc1", {"etype":"etype1", "f_attr1":"v1"},
["f_tag1", "f_tag2"])
feature1.save()
# load
f1 = Feature.load("fgname1", "f_name1")
print("Feature with group 'fgname1' and name 'f_name1:")
print(f1, '\n')
# test query
feature2 = Feature("fgname1", "f_name2", "double", "f_desc2", {"etype":"etype1", "f_attr1":"v2"},
["f_tag1", "f_tag3"])
feature2.save()
feature3 = Feature("fgname2", "f_name3", "double", "f_desc3", {"etype":"etype2", "f_attr2":"v3"},
["f_tag2", "f_tag4"])
feature3.save()
# query 1
print("Features in feature group 'fg_name1':")
f_df = Feature.query("fgname = 'fgname1'")
f_df.show()
# query 2
print("Features of type 'integer':")
f_df = Feature.query("type = 'integer'")
f_df.show()
# query 3
print("Features with the attribute 'etype'='etype1':")
f_df = Feature.query("attrs.etype = 'etype1'")
f_df.show()
# query 3
print("Features with the tag 'f_tag2':")
f_df = Feature.query("array_contains(tags, 'f_tag2')")
f_df.show()
Output:
Feature with group 'fgname1' and name 'f_name1:
<class '__main__.Feature'>: {'fid': 'fgname1_f_name1', 'fgname': 'fgname1', 'name': 'f_name1', 'ftype': 'integer', 'description': 'f_desc1', 'attrs': {'etype': 'etype1', 'f_attr1': 'v1'}, 'tags': ['f_tag1', 'f_tag2']}
Features in feature group 'fg_name1':
+---------------+-------+-------+-------+-----------+--------------------+----------------+
| fid| fgname| name| type|description| attrs| tags|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
|fgname1_f_name1|fgname1|f_name1|integer| f_desc1|[etype -> etype1,...|[f_tag1, f_tag2]|
|fgname1_f_name2|fgname1|f_name2| double| f_desc2|[etype -> etype1,...|[f_tag1, f_tag3]|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
Features of type 'integer':
+---------------+-------+-------+-------+-----------+--------------------+----------------+
| fid| fgname| name| type|description| attrs| tags|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
|fgname1_f_name1|fgname1|f_name1|integer| f_desc1|[etype -> etype1,...|[f_tag1, f_tag2]|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
Features with the attribute 'etype'='etype1':
+---------------+-------+-------+-------+-----------+--------------------+----------------+
| fid| fgname| name| type|description| attrs| tags|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
|fgname1_f_name1|fgname1|f_name1|integer| f_desc1|[etype -> etype1,...|[f_tag1, f_tag2]|
|fgname1_f_name2|fgname1|f_name2| double| f_desc2|[etype -> etype1,...|[f_tag1, f_tag3]|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
Features with the tag 'f_tag2':
+---------------+-------+-------+-------+-----------+--------------------+----------------+
| fid| fgname| name| type|description| attrs| tags|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
|fgname1_f_name1|fgname1|f_name1|integer| f_desc1|[etype -> etype1,...|[f_tag1, f_tag2]|
|fgname2_f_name3|fgname2|f_name3| double| f_desc3|[etype -> etype2,...|[f_tag2, f_tag4]|
+---------------+-------+-------+-------+-----------+--------------------+----------------+
# test Entity
# test save and load
# save
features1 = [('fg1_f_name1', IntegerType(), 1), ('fg1_f_name2', DoubleType(), 2.0), ('fg1_f_name3', StringType(), 'three')]
record1 = [('eid', StringType(), 'eid1')] + features1
ent1 = Entity('entity_type1', record1, 'eid')
schema = Entity.get_schema(record1)
ent1.save(schema);
# load
e1 = Entity.load('entity_type1', 'eid1', schema, 'eid')
print("Entity of type 'entity_type1' and id 'eid1':")
print(e1, '\n')
# test query
features2 = [('fg1_f_name1', IntegerType(), 10), ('fg1_f_name2', DoubleType(), 20.0), ('fg1_f_name3', StringType(), 'thirty')]
record2 = [('eid', StringType(), 'eid2')] + features2
ent2 = Entity('entity_type2', record2, 'eid')
ent2.save(schema);
# query 1
print("Instances of entity type entity_type1 with id ending in 1:")
instances = Entity.query('entity_type1', 'eid like "%1"', schema, 'eid')
instances.show()
# query 2
print("Instances of entity type entity_type2 meeting the specified condition:")
instances = Entity.query('entity_type2', 'eid in ("eid2")', schema, 'eid')
instances.show()
Output:
Entity of type 'entity_type1' and id 'eid1':
<class '__main__.Entity'>: {'etype': 'entity_type1', 'record': [('eid', 'string', 'eid1'), ('fg1_f_name1', 'integer', 1), ('fg1_f_name2', 'double', 2.0), ('fg1_f_name3', 'string', 'three')], 'id_col': 'eid'}
Instances of entity type entity_type1 with id ending in 1:
+----+-----------+-----------+-----------+
| eid|fg1_f_name1|fg1_f_name2|fg1_f_name3|
+----+-----------+-----------+-----------+
|eid1| 1| 2.0| three|
+----+-----------+-----------+-----------+
Instances of entity type entity_type2 meeting the specified condition:
+----+-----------+-----------+-----------+
| eid|fg1_f_name1|fg1_f_name2|fg1_f_name3|
+----+-----------+-----------+-----------+
|eid2| 10| 20.0| thirty|
+----+-----------+-----------+-----------+
Feature Data: Credit Card Transactions
The following cell populates the data from Part 1 in the database for use below.
Read and Transform Data
# read and transform the sample credit card transactions data from a csv file
from pyspark.sql.functions import expr
df = spark.read.options(header="True", inferSchema="True") \
.csv("resources/creditcard_small.csv") \
. orderBy(['_c0'], ascending=[True])
new_col_names = ['CC1_' + (c if c != '_c0' else 'OldIdx') for c in df.columns]
df = df.toDF(*new_col_names) \
.withColumn('TxnId', expr('CC1_OldIdx+1').cast(StringType())) \
.select(['TxnId','CC1_Class','CC1_Amount']+['CC1_V'+str(i) for i in range(1,29)])
df.toPandas().head()
Output:
TxnId CC1_Class CC1_Amount CC1_V1 CC1_V2 CC1_V3 CC1_V4 CC1_V5 CC1_V6 CC1_V7 ... CC1_V19 CC1_V20 CC1_V21 CC1_V22 CC1_V23 CC1_V24 CC1_V25 CC1_V26 CC1_V27 CC1_V28 0 1 0 149.62 -1.359807 -0.072781 2.536347 1.378155 -0.338321 0.462388 0.239599 ... 0.403993 0.251412 -0.018307 0.277838 -0.110474 0.066928 0.128539 -0.189115 0.133558 -0.021053 1 2 0 2.69 1.191857 0.266151 0.166480 0.448154 0.060018 -0.082361 -0.078803 ... -0.145783 -0.069083 -0.225775 -0.638672 0.101288 -0.339846 0.167170 0.125895 -0.008983 0.014724 2 3 0 378.66 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 ... -2.261857 0.524980 0.247998 0.771679 0.909412 -0.689281 -0.327642 -0.139097 -0.055353 -0.059752 3 4 0 123.50 -0.966272 -0.185226 1.792993 -0.863291 -0.010309 1.247203 0.237609 ... -1.232622 -0.208038 -0.108300 0.005274 -0.190321 -1.175575 0.647376 -0.221929 0.062723 0.061458 4 5 0 69.99 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 ... 0.803487 0.408542 -0.009431 0.798278 -0.137458 0.141267 -0.206010 0.502292 0.219422 0.215153 5 rows × 31 columns
Save Features
Insert the credit card transaction features in the feature store.
# 1. Create a feature group.
FG_NAME = 'CC1'
FG_DESCRIPTION = 'Credit card transaction data'
FG_SOURCE = 'European cardholder dataset from Kaggle'
fg = FeatureGroup(FG_NAME, FG_DESCRIPTION, FG_SOURCE,
attrs={'entity':'cctxn', 'class':'fraud'}, tags=['kaggle', 'demo'])
fg.save()
# 2. Create feature metadata
FEATURE_AMOUNT = 'Amount'
f = Feature(FG_NAME, FEATURE_AMOUNT, 'double', "Transaction amount",
attrs={'entity':'cctxn'}, tags=['usd'])
f.save()
FEATURE_CLASS = 'Class'
f = Feature(FG_NAME, FEATURE_CLASS, 'integer', "Label indicating fraud or not",
attrs={'entity':'cctxn'}, tags=['label'])
f.save()
FEATURE_PCA_XFORM = "V"
for i in range(1,29):
f = Feature(FG_NAME, FEATURE_PCA_XFORM+str(i), 'double', "Transformed version of PCA",
attrs={'entity':'cctxn'}, tags=['pca'])
f.save()
# 3. Save feature values in entity records
ENTITY_TYPE = 'cctxn'
ID_COLUMN = 'TxnId'
Entity.saveDF(df, ENTITY_TYPE, ID_COLUMN)
print('Features stored to Feature Store.')
Output:
Features stored to Feature Store.
Implementing Dataset
We created example implementations of Feature Group, Feature, and Entity objects as above. Let us now create a similar implementation of Dataset.
Object Model
A dataset is a subset of features and entities selected for an ML model. A Dataset object holds the selected features and entity instances. The actual (materialized) copy of entity records is stored outside the feature store (for instance, in a file system).
Attributes
A dataset record has the following attributes.
- name: name of the data set, serves as the primary key for the record
- description: human readable description
- features: a list of the dataset features
- predicate: query predicate to enumerate the entity instances in the dataset
- location: external location where the dataset is stored
- attrs: other metadata
- tags: associated tags
Datasets are stored in the set "dataset-metadata".
Operations
Dataset is used during Model Training. The following operations are needed.
- create
- load (get)
- query (returns dataset metadata records)
- materialize (returns entity records as defined by a dataset)
Dataset Implementation
Below is an example implementation of Dataset as described above.
# Dataset
class Dataset:
schema = StructType([StructField("name", StringType(), False),
StructField("description", StringType(), True),
StructField("entity", StringType(), False),
StructField("id_col", StringType(), False),
StructField("id_type", StringType(), False),
StructField("features", ArrayType(StringType()), True),
StructField("query", StringType(), True),
StructField("location", StringType(), True),
StructField("attrs", MapType(StringType(), StringType()), True),
StructField("tags", ArrayType(StringType()), True)])
def __init__(self, name, description, entity, id_col, id_type,
features, query, location, attrs, tags):
self.name = name
self.description = description
self.entity = entity
self.id_col = id_col
self.id_type = id_type
self.features = features
self.query = query
self.location = location
self.attrs = attrs
self.tags = tags
return
def __str__(self):
return str(self.__class__) + ": " + str(self.__dict__)
def save(self):
inputBuf = [(self.name, self.description, self.entity, self.id_col, self.id_type,
self.features, self.query, self.location, self.attrs, self.tags)]
inputRDD = spark.sparkContext.parallelize(inputBuf)
inputDF = spark.createDataFrame(inputRDD, Dataset.schema)
#Write the data frame to Aerospike, the name field is used as the primary key
inputDF.write \
.mode('overwrite') \
.format("aerospike") \
.option("aerospike.writeset", "dataset-metadata")\
.option("aerospike.updateByKey", "name") \
.save()
return
def load(name):
dataset = None
ds_df = spark.read \
.format("aerospike") \
.option("aerospike.set", "dataset-metadata") \
.schema(Dataset.schema) \
.option("aerospike.updateByKey", "name") \
.load().where("name = \"" + name + "\"")
if ds_df.count() > 0:
dstuple = ds_df.collect()[0]
dataset = Dataset(*dstuple)
return dataset
def query(predicate): #returns a dataframe
ds_df = spark.read \
.format("aerospike") \
.schema(Dataset.schema) \
.option("aerospike.set", "dataset-metadata") \
.load().where(predicate)
return ds_df
def features_to_schema(entity, id_col, id_type, features):
def convert_field_type(ftype):
return DoubleType() if ftype == 'double' \
else (IntegerType() if ftype in ['integer','long'] \
else StringType())
schema = StructType()
schema.add(id_col, convert_field_type(id_type), False)
for fid in features:
sep = fid.find('_')
f = Feature.load(fid[:sep] if sep != -1 else "", fid[sep+1:])
if f:
schema.add(f.fid, convert_field_type(f.ftype), True)
return schema
def materialize_to_df(self):
df = Entity.query(self.entity, self.query,
Dataset.features_to_schema(self.entity, self.id_col, self.id_type,
self.features), self.id_col)
return df
# test Dataset
# test save and load
# save
features = ["CC1_Amount", "CC1_Class", "CC1_V1"]
ds = Dataset("ds_test1", "Test dataset", "cctxn", "TxnId", "string",
features, "CC1_Amount > 1500", "", {"risk":"high"}, ["test", "dataset"])
ds.save()
# load
ds = Dataset.load("ds_test1")
print("Dataset named 'ds_test1':")
print(ds, '\n')
# test query
print("Datasets with attribute 'risk'='high' and tag 'test':")
dsq_df = Dataset.query("attrs.risk == 'high' and array_contains(tags, 'test')")
dsq_df.show()
# test materialize_to_df
print("Materialize dataset ds_test1 as defined above:")
ds_df = ds.materialize_to_df()
print("Records in the dataset: ", ds_df.count())
ds_df.show(5)
Output:
Dataset named 'ds_test1':
<class '__main__.Dataset'>: {'name': 'ds_test1', 'description': 'Test dataset', 'entity': 'cctxn', 'id_col': 'TxnId', 'id_type': 'string', 'features': ['CC1_Amount', 'CC1_Class', 'CC1_V1'], 'query': 'CC1_Amount > 1500', 'location': '', 'attrs': {'risk': 'high'}, 'tags': ['test', 'dataset']}
Datasets with attribute 'risk'='high' and tag 'test':
+--------+------------+------+------+-------+--------------------+-----------------+--------+--------------+---------------+
| name| description|entity|id_col|id_type| features| query|location| attrs| tags|
+--------+------------+------+------+-------+--------------------+-----------------+--------+--------------+---------------+
|ds_test1|Test dataset| cctxn| TxnId| string|[CC1_Amount, CC1_...|CC1_Amount > 1500| |[risk -> high]|[test, dataset]|
+--------+------------+------+------+-------+--------------------+-----------------+--------+--------------+---------------+
Materialize dataset ds_test1 as defined above:
Records in the dataset: 4
+------+----------+---------+-----------------+
| TxnId|CC1_Amount|CC1_Class| CC1_V1|
+------+----------+---------+-----------------+
| 6972| 1809.68| 1|-3.49910753739178|
| 165| 3828.04| 0|-6.09324780457494|
|249168| 1504.93| 1|-1.60021129907252|
|176050| 2125.87| 1|-2.00345953080582|
+------+----------+---------+-----------------+
Using Pushdown Expressions
In order to get best performance from the Aerospike feature store, one important optimization is to "push down" processing to the database and minimize the amount of data retrieved to Spark. This is especially important for querying from large amounts of underlying data, such as when creating a dataset. This is achieved by "pushing down" filters or processing filters in the database.
Currently the Spark Connector allows two mutually exclusive ways of specifying filters in a dataframe load:
- The
where
clause - The
pushdown expressions
option
Only one may be specified because the underlying Aerospike database mechanisms used to process them are different and exclusive. The latter takes prcedence if both are specified.
The where
clause filter may be pushed down in part or fully depending on the parts in the filter (that is, if the database supports them and the Spark Connector takes advantage of it). The pushdown expression
filter however is fully processed in the database, which ensures best performance.
Aerospike expressions provide some filtering capabilities that are either not available on Spark (such as record metadata based filtering). Also, expression based filtering will be processed more efficiently in the database. On the other hand, the where
clause also has many capabilities that are not available in Aerospike expressions. So it may be necessary to use both, in which case it is best to use pushdown expressions to retrieve a dataframe, and then process it using the Spark dataframe capabilities.
Creating Pushdown Expressions
The Spark Connector currently requires the base64 encoding of the expression. Exporting the base64 encoded expression currently requires the Java client, which can be run in a parallel notebook, and entails the following steps:
- Write the expression in Java.
- Test the expression with the desired data.
- Obtain the base64 encoding.
- Use the base64 representation in this notebook as shown below.
You can run the adjunct notebook Pushdown Expressions for Spark Connector to follow the above recipe and obtain the base64 representation of an expression for use in the following examples.
Examples
We illustrate pushdown expressions with Feature
class queries, but the query
method implementation can be adopted in other objects.
The examples below illustrate the capabilities and process of working with pushdown expressions. More details on expressions are explained in Pushdown Expressions for Spark Connector notebook.
Records with Specific Tags
Examine the expression in Java:
Exp.gt(
ListExp.getByValueList(ListReturnType.COUNT,
Exp.val(new ArrayList<String>(Arrays.asList("label","f_tag1"))),
Exp.listBin("tags")),
Exp.val(0))
The outer expression compares for the value returned from the first argument to be greater than 0. The first argument is the count of matching tags from the specified tags in the list bin tags
.
Obtain the base64 representation from Pushdown Expressions for Spark Connector notebook. It is "kwOVfwIAkxcFkn6SpgNsYWJlbKcDZl90YWcxk1EEpHRhZ3MA"
base64_expr = "kwOVfwIAkxcFkn6SpgNsYWJlbKcDZl90YWcxk1EEpHRhZ3MA"
f_df = Feature.query(None, pushdown_expr=base64_expr)
f_df.toPandas()
Output:
fid fgname name type description attrs tags 0 fgname1_f_name1 fgname1 f_name1 integer f_desc1 'etype': 'etype1', 'f_attr1': 'v1' [f_tag1, f_tag2] 1 CC1_Class CC1 Class integer Label indicating fraud or not 'entity': 'cctxn' [label] 2 fgname1_f_name2 fgname1 f_name2 double f_desc2 'etype': 'etype1', 'f_attr1': 'v2' [f_tag1, f_tag3]
Records with Specific Attribute Value
Examine the expression in Java:
Exp.eq(
MapExp.getByKey(MapReturnType.VALUE,
Exp.Type.STRING, Exp.val("f_attr1"), Exp.mapBin("attrs")),
Exp.val("v1"))
It would filter records having a key "f_attr1" with value "v1" from the map bin attrs
.
Obtain the base64 representation from Pushdown Expressions for Spark Connector notebook. It is "kwGVfwMAk2EHqANmX2F0dHIxk1EFpWF0dHJzowN2MQ==".
base64_expr = "kwGVfwMAk2EHqANmX2F0dHIxk1EFpWF0dHJzowN2MQ=="
f_df = Feature.query(None, pushdown_expr=base64_expr)
f_df.toPandas()
Output:
fid fgname name type description attrs tags 0 fgname1_f_name1 fgname1 f_name1 integer f_desc1 'etype': 'etype1', 'f_attr1': 'v1' [f_tag1, f_tag2]
Records with String Matching Pattern
Examine the expression in Java:
Exp.regexCompare("^c.*2$", RegexFlag.ICASE, Exp.stringBin("fid"))
It would filter records with fid starting with "c" and ending in "2" (case insensitive).
Obtain the base64 representation from Pushdown Expressions for Spark Connector notebook. It is "lAcCpl5DLioyJJNRA6NmaWQ=".
base64_expr = "lAcCpl5DLioyJJNRA6NmaWQ="
f_df = Feature.query(None, pushdown_expr=base64_expr)
f_df.toPandas()
Output:
fid fgname name type description attrs tags 0 CC1_V2 CC1 V2 double Transformed version of PCA 'entity': 'cctxn' [pca] 1 CC1_V12 CC1 V12 double Transformed version of PCA 'entity': 'cctxn' [pca] 2 CC1_V22 CC1 V22 double Transformed version of PCA 'entity': 'cctxn' [pca]
Exploring Features in Feature Store
Now let's explore the features available in the Feature Store prior to using them to train a model. We will illustrate this with the querying functions on the metadata objects we have implemented above, as well as Spark functions.
Exploring Datasets
As we are interested in building a fraud detection model, let's see if there are any existing datasets that have "fraud' in their description. At present there should be no datasets in the database until we create and save one in later sections.
ds_df = Dataset.query("description like '%fraud%'")
ds_df.show()
Output:
+----+-----------+------+------+-------+--------+-----+--------+-----+----+
|name|description|entity|id_col|id_type|features|query|location|attrs|tags|
+----+-----------+------+------+-------+--------+-----+--------+-----+----+
+----+-----------+------+------+-------+--------+-----+--------+-----+----+
Exploring Feature Groups
Let's identify feature groups for the entity type "cctxn" (credit card transactions) that have an attribute "class"="fraud"
fg_df = FeatureGroup.query("attrs.entity == 'cctxn' and attrs.class == 'fraud'")
fg_df.toPandas().transpose().head()
Output:
0 name CC1 description Credit card transaction data source European cardholder dataset from Kaggle attrs 'class': 'fraud', 'entity': 'cctxn' tags [kaggle, demo]
# View all available features in this feature group
f_df = Feature.query("fgname == 'CC1'")
f_df.toPandas()
Output:
fid fgname name type description attrs tags 0 CC1_V23 CC1 V23 double Transformed version of PCA 'entity': 'cctxn' [pca] 1 CC1_V10 CC1 V10 double Transformed version of PCA 'entity': 'cctxn' [pca] 2 CC1_Class CC1 Class integer Label indicating fraud or not 'entity': 'cctxn' [label] 3 CC1_V20 CC1 V20 double Transformed version of PCA 'entity': 'cctxn' [pca] 4 CC1_V16 CC1 V16 double Transformed version of PCA 'entity': 'cctxn' [pca] 5 CC1_V1 CC1 V1 double Transformed version of PCA 'entity': 'cctxn' [pca] 6 CC1_V6 CC1 V6 double Transformed version of PCA 'entity': 'cctxn' [pca] 7 CC1_V25 CC1 V25 double Transformed version of PCA 'entity': 'cctxn' [pca] 8 CC1_V9 CC1 V9 double Transformed version of PCA 'entity': 'cctxn' [pca] 9 CC1_V2 CC1 V2 double Transformed version of PCA 'entity': 'cctxn' [pca] 10 CC1_V3 CC1 V3 double Transformed version of PCA 'entity': 'cctxn' [pca] 11 CC1_V12 CC1 V12 double Transformed version of PCA 'entity': 'cctxn' [pca] 12 CC1_V21 CC1 V21 double Transformed version of PCA 'entity': 'cctxn' [pca] 13 CC1_V27 CC1 V27 double Transformed version of PCA 'entity': 'cctxn' [pca] 14 CC1_Amount CC1 Amount double Transaction amount 'entity': 'cctxn' [usd] 15 CC1_V24 CC1 V24 double Transformed version of PCA 'entity': 'cctxn' [pca] 16 CC1_V7 CC1 V7 double Transformed version of PCA 'entity': 'cctxn' [pca] 17 CC1_V28 CC1 V28 double Transformed version of PCA 'entity': 'cctxn' [pca] 18 CC1_V4 CC1 V4 double Transformed version of PCA 'entity': 'cctxn' [pca] 19 CC1_V13 CC1 V13 double Transformed version of PCA 'entity': 'cctxn' [pca] 20 CC1_V17 CC1 V17 double Transformed version of PCA 'entity': 'cctxn' [pca] 21 CC1_V18 CC1 V18 double Transformed version of PCA 'entity': 'cctxn' [pca] 22 CC1_V26 CC1 V26 double Transformed version of PCA 'entity': 'cctxn' [pca] 23 CC1_V19 CC1 V19 double Transformed version of PCA 'entity': 'cctxn' [pca] 24 CC1_V14 CC1 V14 double Transformed version of PCA 'entity': 'cctxn' [pca] 25 CC1_V11 CC1 V11 double Transformed version of PCA 'entity': 'cctxn' [pca] 26 CC1_V8 CC1 V8 double Transformed version of PCA 'entity': 'cctxn' [pca] 27 CC1_V5 CC1 V5 double Transformed version of PCA 'entity': 'cctxn' [pca] 28 CC1_V22 CC1 V22 double Transformed version of PCA 'entity': 'cctxn' [pca] 29 CC1_V15 CC1 V15 double Transformed version of PCA 'entity': 'cctxn' [pca]
The features look promising for a fraud prediction model. Let's look at the actual feature data and its characteristics by querying the entity records.
Exploring Feature Data
We can further explore the feature data to determine what features should be part of the dataset. The feature data resides in Entity records and we can use the above info to form the schema and retrieve the records.
Defining Schema
In order to query using the Aerospike Spark Conntector, we must define the schema for the record.
# define the schema for the record.
FG_NAME = 'CC1'
ENTITY_TYPE = 'cctxn'
ID_COLUMN = 'TxnId'
FEATURE_AMOUNT = 'Amount'
FEATURE_CLASS = 'Class'
FEATURE_PCA_XFORM = "V"
schema = StructType([StructField(ID_COLUMN, StringType(), False),
StructField(FG_NAME+'_'+FEATURE_CLASS, IntegerType(), False),
StructField(FG_NAME+'_'+FEATURE_AMOUNT, DoubleType(), False)])
for i in range(1,29):
schema.add(FG_NAME+'_'+FEATURE_PCA_XFORM+str(i), DoubleType(), True)
Retrieving Data
Here we get all records from the sample data in the database. A small subset of the data would suffice in practice.
# let's get the entity records to assess the data
txn_df = Entity.query(ENTITY_TYPE, "TxnId like '%'", schema, "TxnId")
print("Records retrieved: ", txn_df.count())
txn_df.printSchema()
Output:
Records retrieved: 984
root
|-- TxnId: string (nullable = false)
|-- CC1_Class: integer (nullable = false)
|-- CC1_Amount: double (nullable = false)
|-- CC1_V1: double (nullable = true)
|-- CC1_V2: double (nullable = true)
|-- CC1_V3: double (nullable = true)
|-- CC1_V4: double (nullable = true)
|-- CC1_V5: double (nullable = true)
|-- CC1_V6: double (nullable = true)
|-- CC1_V7: double (nullable = true)
|-- CC1_V8: double (nullable = true)
|-- CC1_V9: double (nullable = true)
|-- CC1_V10: double (nullable = true)
|-- CC1_V11: double (nullable = true)
|-- CC1_V12: double (nullable = true)
|-- CC1_V13: double (nullable = true)
|-- CC1_V14: double (nullable = true)
|-- CC1_V15: double (nullable = true)
|-- CC1_V16: double (nullable = true)
|-- CC1_V17: double (nullable = true)
|-- CC1_V18: double (nullable = true)
|-- CC1_V19: double (nullable = true)
|-- CC1_V20: double (nullable = true)
|-- CC1_V21: double (nullable = true)
|-- CC1_V22: double (nullable = true)
|-- CC1_V23: double (nullable = true)
|-- CC1_V24: double (nullable = true)
|-- CC1_V25: double (nullable = true)
|-- CC1_V26: double (nullable = true)
|-- CC1_V27: double (nullable = true)
|-- CC1_V28: double (nullable = true)
Examining Data
We will examine the statistical properties as well as null values of the feature columns. Note, the column CC1_Class is the label (fraud or not).
# examine the statistical properties
txn_df.describe().toPandas().transpose()
Output:
0 1 2 3 4 summary count mean stddev min max TxnId 984 59771.279471544716 83735.17714512876 1 99507 CC1_Class 984 0.5 0.5002542588519272 0 1 CC1_Amount 984 96.22459349593494 240.14239707065826 0.0 3828.04 CC1_V1 984 -2.4674030372100715 5.40712231422648 -30.552380043581 2.13238602134104 CC1_V2 984 1.9053035968231344 3.5961094277406076 -12.1142127363483 22.0577289904909 CC1_V3 984 -3.083884202829433 6.435904925385388 -31.1036848245812 3.77285685226266 CC1_V4 984 2.456780057740528 3.0427216170397466 -4.51582435488105 12.1146718424589 CC1_V5 984 -1.5617259373325372 4.202691637741722 -22.105531524316 11.0950886001596 CC1_V6 984 -0.572583991041022 1.8036571668000605 -6.40626663445964 6.47411462748849 CC1_V7 984 -2.73090333834317 5.863241960076915 -43.5572415712451 5.80253735302589 CC1_V8 984 0.26108185138806433 4.850081053008372 -41.0442609210741 20.0072083651213 CC1_V9 984 -1.301144796452937 2.266780102671618 -13.4340663182301 5.43663339611854 CC1_V10 984 -2.805194376398951 4.549492504413138 -24.5882624372475 8.73745780611353 CC1_V11 984 1.9525351017305455 2.7369799649027207 -2.33201137167952 12.0189131816199 CC1_V12 984 -2.995316874600595 4.657383279424634 -18.6837146333443 2.15205511590243 CC1_V13 984 -0.09029142836357146 1.0102129366924129 -3.12779501198771 2.81543981456255 CC1_V14 984 -3.597226605511213 4.5682405087763325 -19.2143254902614 3.44242199594215 CC1_V15 984 0.06275139057382163 1.0021871899317296 -4.49894467676621 2.47135790380837 CC1_V16 984 -2.1571248198091597 3.42439305003353 -14.1298545174931 3.13965565883069 CC1_V17 984 -3.36609535335953 5.953540928078054 -25.1627993693248 6.73938438478335 CC1_V18 984 -1.2187062731658431 2.3587681071910915 -9.49874592104677 3.79031621184375 CC1_V19 984 0.3359445791509033 1.2843379816775733 -3.68190355226504 5.2283417900513 CC1_V20 984 0.21117939872897198 1.0613528102262861 -4.12818582871798 11.0590042933942 CC1_V21 984 0.3548982757919287 2.78726704784996 -22.7976039055519 27.2028391573154 CC1_V22 984 -0.04448149211405775 1.1450798238059015 -8.88701714094871 8.36198519168435 CC1_V23 984 -0.036528942589509734 1.148960101817997 -19.2543276173719 5.46622995370963 CC1_V24 984 -0.04738043011343529 0.5866834793500019 -2.02802422921896 1.21527882183022 CC1_V25 984 0.08757054553217881 0.6404192414977025 -4.78160552206407 2.20820917836653 CC1_V26 984 0.026120460105754934 0.4682991121957343 -1.24392415371264 3.06557569653728 CC1_V27 984 0.09618165650018666 1.0037324673667467 -7.26348214633855 3.05235768679424 CC1_V28 984 0.02786530375842634 0.4429545316584082 -2.73388711897575 1.77936385243205
# check for null values
from pyspark.sql.functions import count, when, isnan
txn_df.select([count(when(isnan(c), c)).alias(c) for c in txn_df.columns]).toPandas().head()
Output:
TxnId CC1_Class CC1_Amount CC1_V1 CC1_V2 CC1_V3 CC1_V4 CC1_V5 CC1_V6 CC1_V7 ... CC1_V19 CC1_V20 CC1_V21 CC1_V22 CC1_V23 CC1_V24 CC1_V25 CC1_V26 CC1_V27 CC1_V28 0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0 1 rows × 31 columns
Defining Dataset
Based on the above exploration, we will choose features V1-V28 for our training dataset, which we will define below.
In addition to the features, we also need to choose the data records for the dataset. We only have a small data from the original dataset, and therefore we will use all the available records by setting the dataset query predicate to "true".
It is possible to create a random dataset of random records by performing an "aerolookup" of randomly selected key values.
# Create a dataset with the V1-V28 features.
CC_FRAUD_DATASET = "CC_FRAUD_DETECTION"
features = ["CC1_V"+str(i) for i in range(1,29)]
features_and_label = ["CC1_Class"] + features
ds = Dataset(CC_FRAUD_DATASET, "Training dataset for fraud detection model", "cctxn", "TxnId", "string",
features_and_label, "true", "", {"class":"fraud"}, ["test", "2017"])
ds_df = ds.materialize_to_df()
print("Records in the dataset: ", ds_df.count())
Output:
Records in the dataset: 984
Save Dataset
Save the dataset in Feature Store for future use.
# save the materialized dataset externally in a file
DATASET_PATH = 'resources/fs_part2_dataset_cctxn.csv'
ds_df.write.csv(path=DATASET_PATH, header="true", mode="overwrite", sep="\t")
# save the dataset metadata in the feature store
ds.location = DATASET_PATH
ds.save()
Query and Verify Dataset
Verify the saved dataset is in the feature store for future exploration and use.
dsq_df = Dataset.query("description like '%fraud%'")
dsq_df.toPandas().transpose()
Output:
0 name CC_FRAUD_DETECTION description Training dataset for fraud detection model entity cctxn id_col TxnId id_type string features [CC1_Class, CC1_V1, CC1_V2, CC1_V3, CC1_V4, CC... query true location resources/fs_part2_dataset_cctxn.csv attrs 'class': 'fraud' tags [test, 2017]
Verify the database through an AQL query on the set "dataset-metadata".
!aql -c "select * from test.dataset-metadata"
Output:
select * from test.dataset-metadata
+--------------------------------------+----------------------------------------------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+----------+----------------------------------------+----------------------+---------------------+-----------------------------+
| attrs | description | entity | features | id_col | id_type | location | name | query | tags |
+--------------------------------------+----------------------------------------------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+----------+----------------------------------------+----------------------+---------------------+-----------------------------+
| KEY_ORDERED_MAP('{"class":"fraud"}') | "Training dataset for fraud detection model" | "cctxn" | LIST('["CC1_Class", "CC1_V1", "CC1_V2", "CC1_V3", "CC1_V4", "CC1_V5", "CC1_V6", "CC1_V7", "CC1_V8", "CC1_V9", "CC1_V10", "CC1_V11", "CC1_V12", "CC1_V13", "CC1_V14", "CC1_V15", "CC1_V16", "CC1_V17", "CC1_V18", "CC1_V19", "CC1_V20", "CC1_V21", "CC1_V22", " | "TxnId" | "string" | "resources/fs_part2_dataset_cctxn.csv" | "CC_FRAUD_DETECTION" | "true" | LIST('["test", "2017"]') |
| KEY_ORDERED_MAP('{"risk":"high"}') | "Test dataset" | "cctxn" | LIST('["CC1_Amount", "CC1_Class", "CC1_V1"]') | "TxnId" | "string" | "" | "ds_test1" | "CC1_Amount > 1500" | LIST('["test", "dataset"]') |
+--------------------------------------+----------------------------------------------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------+----------+----------------------------------------+----------------------+---------------------+-----------------------------+
2 rows in set (0.212 secs)
OK
Create AI/ML Model
Below we will choose two algorithms to predict fraud in a credit card transcation: LogisticRegression and RandomForestClassifier.
Create Training and Test Sets
We first split the dataset into training and test sets to train and evaluate a model.
from pyspark.ml.feature import VectorAssembler
# create a feature vector from features
assembler = VectorAssembler(inputCols=features, outputCol="fvector")
ds_df2 = assembler.transform(ds_df)
# split the dataset into randomly selected training and test sets
train, test = ds_df2.randomSplit([0.8,0.2], seed=2021)
print('Training dataset records:', train.count())
print('Test dataset records:', test.count())
Output:
Training dataset records: 791
Test dataset records: 193
# examine the fraud cases in the training set
train.groupby('CC1_Class').count().show()
Output:
+---------+-----+
|CC1_Class|count|
+---------+-----+
| 1| 380|
| 0| 411|
+---------+-----+
Train Model
We choose two models to train: LogisticRegression and RandomForestClassifier.
from pyspark.ml.classification import LogisticRegression, RandomForestClassifier
lr_algo = LogisticRegression(featuresCol='fvector', labelCol='CC1_Class', maxIter=5)
lr_model = lr_algo.fit(train)
rf_algo = RandomForestClassifier(featuresCol='fvector', labelCol='CC1_Class')
rf_model = rf_algo.fit(train)
Evaluate Model
Run the trained models on the test set and evaluate their performacne metrics.
from pyspark.mllib.evaluation import BinaryClassificationMetrics
from pyspark.ml.evaluation import BinaryClassificationEvaluator
# rename label column
test = test.withColumnRenamed('CC1_Class', 'label')
# use the logistic regression model to predict test cases
lr_predictions = lr_model.transform(test)
# instantiate evaluator
evaluator = BinaryClassificationEvaluator()
# Logistic Regression performance metrics
print("Logistic Regression: Accuracy = {}".format(evaluator.evaluate(lr_predictions)))
lr_labels_and_predictions = test.rdd.map(lambda x: float(x.label)).zip(lr_predictions.rdd.map(lambda x: x.prediction))
lr_metrics = BinaryClassificationMetrics(lr_labels_and_predictions)
print("Logistic Regression: Area under ROC = %s" % lr_metrics.areaUnderROC)
print("Logistic Regression: Area under PR = %s" % lr_metrics.areaUnderPR)
Output:
Logistic Regression: Accuracy = 0.9853395061728388
Logistic Regression: Area under ROC = 0.9298321136461472
Logistic Regression: Area under PR = 0.8910277315666429
# use the random forest model to predict test cases
rf_predictions = rf_model.transform(test)
# RandonForestClassifer performance metrics
print("Random Forest Classifier: Accuracy = {}".format(evaluator.evaluate(rf_predictions)))
rf_labels_and_predictions = test.rdd.map(lambda x: float(x.label)).zip(rf_predictions.rdd.map(lambda x: x.prediction))
rf_metrics = BinaryClassificationMetrics(rf_labels_and_predictions)
print("Random Forest Classifier: Area under ROC = %s" % rf_metrics.areaUnderROC)
print("Random Forest Classifier: Area under PR = %s" % rf_metrics.areaUnderPR)
Output:
Random Forest Classifier: Accuracy = 0.9895282186948847
Random Forest Classifier: Area under ROC = 0.9251075268817205
Random Forest Classifier: Area under PR = 0.882099602146558
Save Model
Save the model.
# Save each model
lr_model.write().overwrite().save("resources/fs_model_lr")
rf_model.write().overwrite().save("resources/fs_model_rf")
Load and Test Model
Load the saved model and test it by predicting a test instance.
from pyspark.ml.classification import LogisticRegressionModel, RandomForestClassificationModel
lr_model2 = LogisticRegressionModel.load("resources/fs_model_lr")
print("Logistic Regression model save/load test:")
lr_predictions2 = lr_model2.transform(test.limit(5))
lr_predictions2['label', 'prediction'].show()
print("Random Forest model save/load test:")
rf_model2 = RandomForestClassificationModel.read().load("resources/fs_model_rf")
rf_predictions2 = rf_model2.transform(test.limit(5))
rf_predictions2['label', 'prediction'].show()
Output:
Logistic Regression model save/load test:
+-----+----------+
|label|prediction|
+-----+----------+
| 1| 1.0|
| 0| 0.0|
| 0| 0.0|
| 0| 0.0|
| 0| 0.0|
+-----+----------+
Random Forest model save/load test:
+-----+----------+
|label|prediction|
+-----+----------+
| 1| 1.0|
| 0| 0.0|
| 0| 0.0|
| 0| 0.0|
| 0| 0.0|
+-----+----------+
Takeaways and Conclusion
In this notebook, we explored how Aerospike can be used as a Feature Store for ML applications. Specifically, we showed how features and datasets stored in the Aerospike can be explored and reused for model training. We implemented a simple example feature store interface that leverages the Aerospike Spark Connector capabilities for this purpose. We used the APIs to create, save, and query features and datasets for model training.
This is the second notebook in the series of notebooks on how Aerospike can be used as a feature store. The first notebook discusses Feature Engineering aspects, whereas the third notebook explores the use of Aerospike Feature Store for Model Serving.
Cleaning Up
Close the spark session, and remove the tutorial data.
try:
spark.stop()
except:
; ignore
# To remove all data in the namespace test, uncomment the following line and run:
#!aql -c "truncate test"
Further Exploration and Resources
Here are some links for further exploration.
Resources
- Related notebooks
- Related blog posts
- Aerospike Developer Hub
- Github repos
Exploring Other Notebooks
Visit Aerospike notebooks repo to run additional Aerospike notebooks. To run a different notebook, download the notebook from the repo to your local machine, and then click on File->Open in the notebook menu, and select Upload.